Math, asked by rebeccaferns15, 1 year ago

2-cosec²a/cosec²a+2 cota = sina-cosa/sina+cosa

Answers

Answered by robinadogra1212
3

Step-by-step explanation:

follow like and mark brainlist

have a nice day

Attachments:
Answered by Dhruv4886
0

By the given explanation, It is proven that 2-cosec²a/cosec²a+ 2 cot a = sin a - cos a/ sin a+cos a  

Given:

2-cosec²a/cosec²a+ 2 cot a = sin a - cos a/ sin a+cos a  

To find:

Prove the given statement

Solution:

Given that

\frac{2 -csc^{2} a}{csc^{2} a+ 2 cot a } = \frac{sin a - cos a}{sin a+cos a}  

Take L H S   \frac{2 -csc^{2} a}{csc^{2} a+ 2 cot a }  

=> \frac{2 - \frac{1}{sin^{2}a}  }{\frac{1}{sin^{2}  a} + 2 \frac{cos a}{sin a} }       [ since csc = 1/sin ]

=> \frac{2sin^{2}a  -  1}{ 1 + 2 cos a sin a} }    

=>  \frac{2sin^{2}a  -  sin^{2} a - cos^{2} a  }{ sin^{2} a + cos^{2} a + 2 cos a sin a} }     [ take 1 = sin²a + cos² a ]

=>  \frac{ sin^{2} a - cos^{2} a  }{ (sin  a + cos a)^{2} }    

=> \frac{ (sin a - cos a)(sin a + cos a)  }{ (sin  a + cos a)^{2} }     [ Use (a² - b²) = (a + b) (a - b) ]

=> \frac{ (sin a - cos a)  }{ (sin  a + cos a) }  = RHS

Here LHS = RHS

Therefore,

By the given explanation, It is proven that 2-cosec²a/cosec²a+ 2 cot a = sin a - cos a/ sin a+cos a  

Learn more at

https://brainly.in/question/3514154

#SPJ3

Similar questions