Math, asked by manjubandrakal, 1 month ago

2 cubes each of volume 64 cm are joined end to end. Find the surface area of the resulting cuboid. ​

Answers

Answered by XitznobitaX
18

{\huge{\sf{\underline{\red{Given :}}}}}

2 cubes each of volume 64 cm are joined end to end.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\blue{To Find:}}}}}

Find the surface area of the resulting cuboid.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\orange{Formula  \: used :}}}}}

{\sf{volume \: of \: cuboid \:  =  {side}^{3} } }

{\sf{area \: of \: cuboid =2(lb + bh + hl) }}

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\green{Solution :}}}}}

Let the sides of cube be x.

{\sf{Volume \:  of \:  1  \: cube = {64}^{3}  }}

{\sf{ {side}^{3}  =  {64cm}^{3} }}

{\sf{ {a}^{3} =  {4}^{3} }}

{\sf{a = 4}}

Than,

Length of cuboid = a + a = 4cm + 4cm = 8cm

Breadth = a = 4cm

Height = a = 4cm

Hence,

Length = 8cm, Breath = 4cm, Height = 4cm

{\sf{area \: of \: cuboid  =2(lb + bh + hl) }}

{\sf{  = 2(8  \times 4 + 4  \times 4 + 4  \times 8}}

=2(32 +16 +32)

=2(80)

{\mathfrak{\red{\boxed{=160 {cm}^{3} }}}}

So,

{\mathfrak{\red{The \:  area \:  of  \: cuboid \:  is  \: 160 {cm}^{3} .}}}

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Answered by xXMrAkduXx
2

Answer:

2 cubes each of volume 64 cm are joined end to end.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\blue{To Find:}}}}}

ToFind:

Find the surface area of the resulting cuboid.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\orange{Formula \: used :}}}}}

Formulaused:

{\sf{volume \: of \: cuboid \: = {side}^{3} } }volumeofcuboid=side

3

{\sf{area \: of \: cuboid =2(lb + bh + hl) }}areaofcuboid=2(lb+bh+hl)

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\huge{\sf{\underline{\green{Solution :}}}}}

Solution:

Let the sides of cube be x.

{\sf{Volume \: of \: 1 \: cube = {64}^{3} }}Volumeof1cube=64

3

{\sf{ {side}^{3} = {64cm}^{3} }}side

3

=64cm

3

{\sf{ {a}^{3} = {4}^{3} }}a

3

=4

3

{\sf{a = 4}}a=4

Than,

Length of cuboid = a + a = 4cm + 4cm = 8cm

Breadth = a = 4cm

Height = a = 4cm

Hence,

Length = 8cm, Breath = 4cm, Height = 4cm

{\sf{area \: of \: cuboid =2(lb + bh + hl) }}areaofcuboid=2(lb+bh+hl)

{\sf{ = 2(8 \times 4 + 4 \times 4 + 4 \times 8}}=2(8×4+4×4+4×8

=2(32 +16 +32)

=2(80)

{\mathfrak{\red{\boxed{=160 {cm}^{3} }}}}

=160cm

3

So,

{\mathfrak{\red{The \: area \: of \: cuboid \: is \: 160 {cm}^{3} .}}}Theareaofcuboidis160cm

3

.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Similar questions