2 cubes each of volume 64 cm are joined end to end. Find the surface area of the resulting cuboid.
Answers
2 cubes each of volume 64 cm are joined end to end.
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Find the surface area of the resulting cuboid.
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Let the sides of cube be x.
Than,
Length of cuboid = a + a = 4cm + 4cm = 8cm
Breadth = a = 4cm
Height = a = 4cm
Hence,
Length = 8cm, Breath = 4cm, Height = 4cm
=2(32 +16 +32)
=2(80)
So,
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Answer:
2 cubes each of volume 64 cm are joined end to end.
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
{\huge{\sf{\underline{\blue{To Find:}}}}}
ToFind:
Find the surface area of the resulting cuboid.
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
{\huge{\sf{\underline{\orange{Formula \: used :}}}}}
Formulaused:
{\sf{volume \: of \: cuboid \: = {side}^{3} } }volumeofcuboid=side
3
{\sf{area \: of \: cuboid =2(lb + bh + hl) }}areaofcuboid=2(lb+bh+hl)
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
{\huge{\sf{\underline{\green{Solution :}}}}}
Solution:
Let the sides of cube be x.
{\sf{Volume \: of \: 1 \: cube = {64}^{3} }}Volumeof1cube=64
3
{\sf{ {side}^{3} = {64cm}^{3} }}side
3
=64cm
3
{\sf{ {a}^{3} = {4}^{3} }}a
3
=4
3
{\sf{a = 4}}a=4
Than,
Length of cuboid = a + a = 4cm + 4cm = 8cm
Breadth = a = 4cm
Height = a = 4cm
Hence,
Length = 8cm, Breath = 4cm, Height = 4cm
{\sf{area \: of \: cuboid =2(lb + bh + hl) }}areaofcuboid=2(lb+bh+hl)
{\sf{ = 2(8 \times 4 + 4 \times 4 + 4 \times 8}}=2(8×4+4×4+4×8
=2(32 +16 +32)
=2(80)
{\mathfrak{\red{\boxed{=160 {cm}^{3} }}}}
=160cm
3
So,
{\mathfrak{\red{The \: area \: of \: cuboid \: is \: 160 {cm}^{3} .}}}Theareaofcuboidis160cm
3
.
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄