2. Factorize the expressions completely
(i) x2 - 22x + 117
(ii) x2.9x + 20
(ili) x2 + x - 132
(iv) x2 + 5x - 104
(v) y2 + 7y - 144
(vi) 22 + 192 - 150
(vii) y2 + y - 72
(viii) x2 + 6x-91
(ix) x2 - 4x-77
(x) x2 - 6x - 135
Answers
Answer:
HERE'S YOUR ANSWER:
Step-by-step explanation:
(i) To Factorise : x²−22x+117
By splitting the middle term=x²−13x−9x+117
=x(x−13)−9(x−13)
=(x−9)(x−13)
So, x²−22x+117
=(x−9)(x−13)
(ii) To factorise: x²-9x+20
By splitting the middle term=x²-4x-5x+20
x(x-4)-5(x-4)
(x-5)(x-4)
(iii) x²+ x – 132
= x²+ 12x – 11x – 132
= x(x+12) – 11(x+12)
= (x+12) (x-11)
(iv) x² + 5x – 104
= x²+ 13x – 8x – 104
= x(x+13) – 8(x+13)
= (x+13) (x-8)
(v) y² + 7y – 144
= y² + 16y – 9y – 144
= y(y+16) – 9(y+16)
= (y+16) (y-9)
(vi) there's an error with the question.. there's no 'x'. check it.
I'm assuming it as x²+19x-150
x²+19x-150
=x²+25x-6x-150
=x(x+25)-6(x+25)
=(x+25)(x-6)
(vii) y2 + y – 72
= y2 + 9y – 9y – 72
= y(y+9) – 9(y+9)
= (y+9) (y-9)
(viii) x²-6x-91
= x²+7x-13x-91
= x(x+7)-13(x+7)
= (x-13)(x+7)
(ix) x²-4x-77
= x²+7x-11x-77
= x(x+7)-11(x+7)
= (x-11)(x+7)
(x) x²-6x-135
= x²+9x-15x-135
= x(x+9)-15(x+9)
=(x-15)+(x+9)