Math, asked by ducklings345, 8 months ago

2.Factorize the following: v) 12x^2 + 17x + 6

Answers

Answered by shalinishipra30
0

Step-by-step explanation:

hope this will help you

Attachments:
Answered by TheValkyrie
3

Answer:

\bigstar{\bold{Zeros\:are\:-\dfrac{2}{3}\:and\:-\dfrac{3}{4} }}

Step-by-step explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • p(x) = 12x² + 17x + 6

\Large{\underline{\underline{\bf{To\:Find:}}}}

  • Zeros of the polynomial

\Large{\underline{\underline{\bf{Solution:}}}}

→ By using factor theorem,

 x=\dfrac{-b\pm\sqrt{b^{2}-4ac } }{2a}

where a = 12, b = 17, c = 6

Substituting the given datas we get,

x=\dfrac{-17\pm\sqrt{17^{2} -4\times 12\times 6} }{2\times 12}

x=\dfrac{-17\pm\sqrt{289-288} }{24}

x=\dfrac{-17\pm 1}{24}

Either

x=\dfrac{-17+1}{24}

x=\dfrac{-16}{24}

x=-\dfrac{2}{3}

or

x=\dfrac{-17-1}{24}

x=\dfrac{-18}{24}

x=-\dfrac{3}{4}

\boxed{\bold{Zeros\:are\:-\dfrac{2}{3}\:and\:-\dfrac{3}{4} }}

\Large{\underline{\underline{\bf{Notes:}}}}

→ The zeros of a polynomial can be found out by

  • Factorisation method
  • Splitting the middle term
  • Completing the square method
Similar questions