Math, asked by kunjshah734, 7 hours ago

2] Factorize : (x – 5)² – (8x – 40) +12​

Answers

Answered by testingpurpose152001
2

Answer:

The given expression factors as (x-7)(x-11)

Step-by-step explanation:

(x-5)^2 - (8x-40) +12\\= (x^2 - 10x + 25) -(8x-40)+12\\= x^2 -18x + 77\\= x^2 - 7x - 11x +77\\= x(x-7) -11(x-7)\\=(x-7)(x-11)

Answered by itzBGMIFLAMExx
3

The given expression factors as (x-7)(x-11)

Step-by-step explanation:

\begin{gathered}(x-5)^2 - (8x-40) +12\\= (x^2 - 10x + 25) -(8x-40)+12\\= x^2 -18x + 77\\= x^2 - 7x - 11x +77\\= x(x-7) -11(x-7)\\=(x-7)(x-11)\end{gathered}(x−5)2−(8x−40)+12=(x2−10x+25)−(8x−40)+12=x2−18x+77=x2−7x−11x+77=x(x−7)−11(x−7)=(x−7)(x−11)

Similar questions