Math, asked by dhankharsanvi, 1 month ago

2. Find a quadratic polynomial whose zeroes are
 \sqrt{2 \: }   \:  \:and \:   \: \frac{2}{5}

Answers

Answered by llItzDishantll
5

Answer:

α = √2

β = \frac{2}{5}

Required Quadratic Polynomial = 5x² - 5√2x + 2

Answered by Divyansh50800850
1

\sf\bold{\underline{\pink{SOLUTION}}}

α \sf{= \sqrt{2}}

β \sf{= \dfrac{2}{5}}

α + β \sf\bold\blue{= \dfrac{5\sqrt{2} + 2}{5}}

α.β \sf\bold\blue{= \dfrac{2\sqrt{2}}{5}}

\sf\bold{\underline{\pink{Quadratic\: Polynomial}}}

\sf{→ x² - (α+β)x + (α.β)}

\sf{→ x² - (\dfrac{5\sqrt{2} + 2}{5} ) + (\dfrac{2\sqrt{2}}{5})}

\sf{→ \dfrac{5x² - (5\sqrt{2} + 2)x + 2\sqrt{2}}{5}}

Similar questions