2) Find real values of for which
is purely real.
4+3i sin e
1-2i sin
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given:
⇒
1−2isinθ
4+3isin(θ)
.......(i)
As the function is purely real, the imaginary part of eqn.(i) would be 0
rationalizing eqn.(i) we get,
⇒
1−2isinθ
4+3isin(θ)
×
1+2isinθ
1+2isinθ
⇒
1
2
−(2isinθ)
2
(4+3isin(θ))×(1+2isin(θ))
.......{since,(a+b)(a−b)=a
2
−b
2
}
⇒
1−4i
2
sin
2
θ
4+8isinθ+3isinθ+6i
2
sin
2
θ
⇒
1+4sin
2
θ
4+11isinθ−6sin
2
θ
.......{since,i
2
=−1 }
⇒
1+4sinθ
1
×[(4−6sin
2
θ)+i(11sinθ)]
the imainary part is equal to zero for eqn. (i) to be purely real.
∴
⇒
1+4sin
2
θ
11sinθ
=0
⇒sinθ=0
the general solution for sinθ=0 is θ∈nπwhere,n∈Z
Hence, for θ∈nπwhere,n∈Z
⇒
1−2isinθ
4+3isin(θ)
is purely real.
Similar questions