2. Find the area of a kite ABCD in which AB=BC=12 cm, AD=CD=16 cm and diagonal
BD=20 cm.
Answers
Answer:
{Area of quadrilateral ABCD=336}\:cm^2
Step-by-step explanation:
\text{Area of quadrilateral= Area of triangle ABD+ Area of triangle BCD}
\textbf{Area of triangle ABD:}
a=16 cm, b=20 cm, c=12 cm
s=\frac{a+b+c}{2}=\frac{16+20+12}{2}
\implies\:s=\frac{48}{2}=24\:cm
\text{Area of triangle ABD}
=\sqrt{s(s-a)(s-b)(s-c)}
=\sqrt{24(24-16)(24-20)(24-12)}
=\sqrt{24(8)(4)(12)}
=\sqrt{3*8*8*4*3*4}
=3*8*4
=96\:cm^2
\textbf{Area of triangle ABD:}
a=26 cm, b=26 cm, c=20 cm
s=\frac{a+b+c}{2}=\frac{26+20+26}{2}
\implies\:s=\frac{72}{2}=36\:cm
\text{Area of triangle ABD}
=\sqrt{s(s-a)(s-b)(s-c)}
=\sqrt{36(36-26)(36-26)(36-20)}
=\sqrt{36(10)(10)(16)}
=6*10*4
=240\:cm^2
\text{Area of quadrilateral ABCD= Area of triangle ABD+ Area of triangle BCD}
\text{Area of quadrilateral ABCD=96+240}
\therefore\:\textbf{Area of quadrilateral ABCD=336}\:cm^2
please mark as brainliest