Math, asked by aachuzz675, 10 months ago


2. Find the area of a quadrant of a circle whose circumference is 22 cm.

Answers

Answered by samyakbhansali2004
0

Answer:

0.0795

Step-by-step explanation:

circumfurence = \pi d\\\\radius=0.318area  of  a quadrant = \pi r^{2} /4 (since quadrant is 1/4)\\so area=\frac{\pi 0.318^{2} }{4} = 0.0795\\

Answered by sourya1794
6

Given :-

  • Circumference = 22 cm

To find :-

  • The area of quadrant of circle

Solution :-

we know that, one fourth of a circular disc is called a quadrant.

  • The central angle of a quadrant is 90°

so,

  • Angle (θ) = 90°

Now,

Circumference of circle = 22 cm

2πr = 22

\rm\:\longrightarrow\:2\times\dfrac{22}{7}\times{r}=22

\rm\longrightarrow\dfrac{44}{7}\times{r}=22

\rm\longrightarrow\:r=\dfrac{22}{\dfrac{44}{7}}

\rm\longrightarrow\:r=\cancel{22}\times\dfrac{7}{\cancel{44}}

\rm\longrightarrow\:r=\dfrac{7}{2}

Then,

we know that,

\blue{\bigstar}\:\:{\underline{\boxed{\bf\red{Area\:of\:quadrant=\dfrac{\theta}{360\degree}\times{\pi}{r}^{2}}}}}

\rm\longrightarrow\:Area=\dfrac{90\degree}{360\degree}\times\dfrac{22}{7}\times\bigg(\dfrac{7}{2}\bigg)^2

\rm\longrightarrow\:Area=\dfrac{9}{36}\times\dfrac{\cancel{22}}{\cancel{7}}\times\dfrac{\cancel{7}}{\cancel{2}}\times\dfrac{7}{2}

\rm\longrightarrow\:Area=\dfrac{\cancel{693}}{\cancel{72}}

\rm\longrightarrow\:Area=\dfrac{77}{8}\:{cm}^{2}

Hence,the area of quadrant of circle will be 77/8 cm².

Similar questions