Math, asked by rawatmonika123456789, 10 months ago

2. Find the area of a quadrilateral ABCD in which AB 3 cm, BC = 4 cm. CD = 4 cm,
DA 5cm and AC-5 cm.

Answers

Answered by Anonymous
43

Step-by-step explanation:

  \bf \underline{Question} \:

2. Find the area of a quadrilateral ABCD in which AB 3 cm, BC = 4 cm. CD = 4 cm,

DA 5cm and AC-5 cm.

______________________________

  \bf \underline{Given} \:

  • AB 3 cm,
  • BC = 4 cm.
  • CD = 4 cm,
  • DA 5cm
  • AC-5 cm.

______________________________

  \bf \underline{To..Find} \:

  • The area of a quadrilateral ABCD

___________________________________

According To the ABC

 \tt \: AC^2 = AB^2 + BC^2 \\ </p><p> \tt \: (5)^2 = (3)^2 + (4)^2

Therefore, ΔABC is a right-angled triangle, right-angled at point B.

 \bf \: we \: have \: the \: formula \to

 \tt \: Area  \: of  \: ABC =  \frac{1}{2}  \times AB  \times BC

 \bf  \: putting \: the \:  all \: values

 \tt \: =  \frac{1}{2}   \times 3  \times 4 = 6 {cm}^{2}

For ΔADC,

</p><p> \tt \: Perimeter = 2s = AC + CD + DA\\  \tt \:= (5 + 4 + 5) cm = 14 cm \\

 \tt \: s = 7 cm

By Heron’s formula,

 \bf area \: of \: triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}\\  \\  \tt \: putting \: the \: all \: values \\\\  \tt \: area \: of \: adc  =   \sqrt{7(7 - 5)(7 - 5)(7 - 4)}\\  \\  \tt \to \:  \sqrt{7  \times 2 \times 2 \times 3}\\  \\  \tt \to \:  2\sqrt{21}  = 9.166 {cm}^{2}

 \tt \: Area of ABCD = Area of ABC + Area of ACD

 \bf \: putting \: all \: values

 \tt \: = (6 + 9.166)  {cm}^{2} \\  \tt = 15.166  {cm}^{2}  \\   \tt \: = 15.2  {cm}^{2}  (approximately)</p><p></p><p>

Attachments:
Similar questions