Math, asked by awmiduhi105, 3 months ago

2.) Find the area of triangle whose sides are:
(i) 9 cm, 10 cm and 17 cm
(ii) 13 cm, 5 cm and 12 cm
(iii) 35 m, 45 m and 50 m
]​

Answers

Answered by Anonymous
87

Given -

  • Sides of three triangles.

To find -

  • Area of triangles.

Formula used -

  • Heron's formula

Solution -

In the question, we are provided with the sides of 3 triangles, and we need to find it's area. For that, we will apply heron's formula and will find every triangle's area. For that, first we will add up side a , b and c and then, semi - perimeter and then applying heron's formula, we will find their area

Let's do it!

Heron's formula says -

  •  \sf \:  \sqrt{s \:(s \:  - a)(s \:  - b)(s \:  - c)} \\

For 1st triangle -

Side a = 9 cm

Side b = 10 cm

Side c = 17 cm

Semi - Perimeter -

 \sf \: s \:  =   \dfrac{9 \:  +  \: 10 \:  +  \: 17}{2} \\  \\  \sf\:  s \:  =  \cancel\frac{36}{2} \\  \\  \sf\: s \:  = 18

Area of 1st triangle -

 \sf  \sqrt{18(18 \:  -  \: 9)(18 \:  -  \: 10)( 18\:  -  \: 17)} \\  \\  \sf \:  \sqrt{18 \:   \times  \: 9 \:  \times  \: 8 \:  \times  \: 1} \\  \\  \sf \:  \sqrt{1296} \\  \\  \sf \: 36 { \: cm}^{2} \\

For 2nd triangle -

Side a = 13 cm

Side b = 5 cm

Side c = 12 cm

Semi - Perimeter -

 \sf \:  s \:   =  \dfrac{13 \:  +  \: 5 \:  +  \: 12}{2} \\  \\  \sf \: s \:  =  \cancel \dfrac{30}{2} \\  \\  \sf \: s \:  = 15 \\

Area of 2nd triangle -

 \sf \:  \sqrt{15(15 \:  -  \: 13)(15 \:  - \: 5)(15 \:  -  \: 12)} \\  \\  \sf \:  \sqrt{15 \:  \times 2 \:  \times  \: 10 \:  \times  \: 3} \\  \\  \sf \:  \sqrt{900} \\  \\  \sf \: 30 { \: cm}^{2}

For 3rd triangle -

Side a = 35 m

Side b = 45 m

Side c = 50 m

Semi - perimeter -

 \sf \: s \:  =  \dfrac{35 \:  +  \: 45 \:  +  \: 50}{2} \\  \\  \sf \: s \:  =   \cancel\frac{130}{2} \\  \\  \sf \: s \:  = 65 \\

Area of 3rd triangle -

 \sf \:  \sqrt{65(65 \:  -  \: 35)(65 \:  -  \: 45)(65 \:  -  \: 50)} \\  \\  \sf \:  \sqrt{65 \:  \times  \: 30 \:  \times  \: 20 \: \times  \: 15} \\  \\  \sf \:  \sqrt{585000} \\  \\  \sf \: 764.8 \: m^{2} \: (appox) \\

________________________________________

Answered by Anonymous
55

Answer:

Given :-

  1. 9 cm , 10 cm and 17 cm
  2. 13 cm , 5 cm and 12 cm
  3. 35 m , 45 m and 50 m

To Find :-

  • What is the area of triangle.

Formula Used :-

Semi-perimeter of triangle :

\sf\boxed{\bold{Semi-perimeter (s) =\: \dfrac{Sum\: of\: all\: sides}{2}}}

Area of triangle by using heron's formula :

\sf\boxed{\bold{Area\: of\: triangle =\: \sqrt{(s(s - a)(s - b)(s - c)}}}

Solution :-

9 cm , 10 cm and 17 cm.

Given :

  • a = 9 cm
  • b = 10 cm
  • c = 17 cm

First, we have to find the semi-perimeter of a triangle,

As we know that,

\leadsto \sf\bold{\pink{Semi-perimeter (s) =\: \dfrac{a + b + c}{2}}}

Then,

\sf Semi-perimeter =\: \dfrac{9 + 10 + 17}{2}

\sf Semi-perimeter =\: \dfrac{19 + 17}{2}

\sf Semi-perimeter =\: \dfrac{\cancel{36}}{\cancel{2}}

\sf\bold{\green{Semi-perimeter =\: 18\: cm}}

Now, we have to find the area of triangle,

\sf Area =\: \sqrt{18(18 - 9)(18 - 10)(18 - 17)}

\sf Area =\: \sqrt{18(9)(8)(1)}

\sf Area =\: \sqrt{18 \times 72}

\sf Area =\: \sqrt{1296}

\sf\bold{\red{Area =\: 36\: {cm}^{2}}}

\therefore The area of a triangle is 36 cm².

_______________________________

13 cm , 5 cm and 12 cm.

Given :

  • a = 13 cm
  • b = 5 cm
  • c = 12 cm

As we know that,

\leadsto \sf\bold{\pink{Semi-perimeter (s) =\: \dfrac{a + b + c}{2}}}

Then,

\sf Semi-perimeter =\: \dfrac{13 + 5 + 12}{2}

\sf Semi-perimeter =\: \dfrac{\cancel{30}}{\cancel{2}}

\sf\bold{\green{Semi-perimeter =\: 15\: cm}}

Now, we have to find the area of a triangle,

\sf Area =\: \sqrt{15(15 - 13)(15 - 5)(15 - 12)}

\sf Area =\: \sqrt{15(2)(10)(3)}

\sf Area =\: \sqrt{15 \times 60}

\sf Area =\: \sqrt{900}

\sf\bold{\red{Area =\: 30\: {cm}^{2}}}

\therefore The area of a triangle is 30 cm².

________________________________

35 m , 45 m and 50 m.

Given :

  • a = 35 m
  • b = 45 m
  • c = 50

As we know that,

\leadsto \sf\bold{\pink{Semi-perimeter (s) =\: \dfrac{a + b + c}{2}}}

Then,

\sf Semi-perimeter =\: \dfrac{35 + 45 + 50}{2}

\sf Semi-perimeter =\: \dfrac{\cancel{130}}{\cancel{2}}

\sf\bold{\green{Semi-perimeter =\: 65\: cm}}

Now, we have to find the area of a triangle,

\sf Area =\: \sqrt{65(65 - 35)(65 - 45)(65 - 50)}

\sf Area =\: \sqrt{65(30)(20)(15)}

\sf Area =\: \sqrt{65 \times 9000}

\sf Area =\: \sqrt{585000}

\sf\bold{\red{Area =\: 764.8\: {cm}^{2}}}

\therefore The area of a triangle is 764.8 cm².

_________________________________

Similar questions