Math, asked by nallamothugowthami52, 10 months ago

2) Find the cosines of angle between a×b if (3a-2b)×(a+2b)are perpendicular to each one and 5a_3b,(a_b)are twi mutually perpendicular vectors
اک
و
ماسه (د که
(د دی
find the cosines of angle between (3a-2b)×(a+2b)perpendicular to each one and
(5á -3b),(a-b)are two
mutualy
perperpendiculas vectors​

Answers

Answered by Swarup1998
3

Vector Analysis

Solution:

The vectors (3\vec{a}-2\vec{b}) and \vec{a}+2\vec{b}) are perpendicular to each other

\Rightarrow (3\vec{a}-2\vec{b}).(\vec{a}+2\vec{b})=0

\Rightarrow 3a^{2}-4b^{2}+4\vec{a}.\vec{b}=0

The vectors (5\vec{a}-3\vec{b}) and (\vec{a}-\vec{b}) are perpendicular to each other

\Rightarrow (5\vec{a}-3\vec{b}).(\vec{a}-\vec{b})=0

\Rightarrow 5a^{2}+3b^{2}-8\vec{a}.\vec{b}=0

We have two relations:

\quad\quad 3a^{2}-4b^{2}+4\vec{a}.\vec{b}=0

\quad\quad 5a^{2}+3b^{2}-8\vec{a}.\vec{b}=0

By cross-multiplication, we get

\quad\frac{a^{2}}{32-12}=\frac{b^{2}}{20+24}=\frac{\vec{a}.\vec{b}}{9+20}

\Rightarrow \frac{a^{2}}{20}=\frac{b^{2}}{44}=\frac{\vec{a}.\vec{b}}{29}=k\:(say)

\Rightarrow a^{2}=20k,\:b^{2}=44k,\:\vec{a}.\vec{b}=29k

\Rightarrow a=\sqrt{20k},\:b=\sqrt{44k},\:\vec{a}.\vec{b}=29k

If \theta be the angle between the vectors \vec{a} and \vec{b}, then

\quad cos\theta=\frac{\vec{a}.\vec{b}}{ab}

\Rightarrow cos\theta=\frac{29k}{\sqrt{20k\times 44k}}

\Rightarrow cos\theta=\frac{29}{\sqrt{880}}

\Rightarrow \boxed{cos\theta=\frac{29}{4\sqrt{55}}}

This is the required cosine of the angle between the vectors \vec{a} and \vec{b}.

Read more on Brainly.in

Three vectors \vec{a}\vec{b} and \vec{c} satisfy the condition \vec{a}+\vec{b}+\vec{c}=\vec{0}. Evaluate the quantity \mu=\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a} if |\vec{a}|=1|\vec{b}|=4 and |\vec{c}|=2.

- https://brainly.in/question/9812079

Similar questions