Math, asked by mohittiwari2278, 7 months ago

2.Find the distance between the following pair of points-

(3,2) and (6,6)

(0, 0) and (6, 1)

(-6, 0) and(4, 0)​

Answers

Answered by Anonymous
8

Answer:

1.. 5 units

2.. root 37 units

3.. 10 units.

hope it hlps u mate....

Answered by Anonymous
32

◔ Question :

Find the distance between the following pair of points :

1) (3 , 2) and (6 , 6)

1) (0 , 0) and (6 , 1)

1) (-6 , 0) and (4 , 0)

» To Find :

The distance between the points.

» We Know :

Distance Formula :

\Longrightarrow \purple{\sf{\underline{\boxed{\sqrt{\left(x_{2} - x_{1}\right)^{2} + \left(y_{2} - y_{1}\right)^{2}}}}}}

Where \sf{x_{1}} , \sf{x_{2}} , \sf{y_{1}} and \sf{y_{2}} are the points lying in the co-ordinates.

◔ Solution :

For points (3 , 2) and (6 , 6)

» Given :

  • \sf{x_{1} = 3}

  • \sf{x_{2} = 6}

  • \sf{y_{1} = 2}

  • \sf{y_{2} = 6}

» Calculation :

Using the Formula and Substituting the values in it ,we get :

\purple{\sf{\sqrt{\left(x_{2} - x_{1}\right)^{2} + \left(y_{2} - y_{1}\right)^{2}}}}

\sf{\Rightarrow \sqrt{\left(6 - 3\right)^{2} + \left(6 - 2\right)^{2}}}

\sf{\Rightarrow \sqrt{3^{2} + 4^{2}}}

\sf{\Rightarrow \sqrt{9 + 16}}

\sf{\Rightarrow \sqrt{25}}

\purple{\sf{\Rightarrow 5}}

Hence ,the distance between the points (3 , 2) and (6 , 6) is 5 units.

 \\

For points (3 , 2) and (6 , 1)

» Given :

\sf{x_{1} = 0}

\sf{x_{2} = 6}

\sf{y_{1} = 0}

\sf{y_{2} = 1}

» Calculation :

Using the Formula and Substituting the values in it ,we get :

\purple{\sf{\sqrt{\left(x_{2} - x_{1}\right)^{2} + \left(y_{2} - y_{1}\right)^{2}}}}

\sf{\Rightarrow \sqrt{\left(6 - 0\right)^{2} + \left(1 - 0\right)^{2}}}

\sf{\Rightarrow \sqrt{6^{2} + 1}}

\sf{\Rightarrow \sqrt{36 + 1}}

\purple{\sf{\Rightarrow \sqrt{37}}}

Hence ,the distance between the points (0 , 0) and (6 , 1) is √37 units.

 \\

For points (-6 , 0) and (4 , 0)

» Given :

\sf{x_{1} = -6}

\sf{x_{2} = 4}

\sf{y_{1} = 0}

\sf{y_{2} = 0}

» Calculation :

Using the Formula and Substituting the values in it ,we get :

\purple{\sf{\sqrt{\left(x_{2} - x_{1}\right)^{2} + \left(y_{2} - y_{1}\right)^{2}}}}

\sf{\Rightarrow \sqrt{\left(4 - (-6)\right)^{2} + \left(0 - 0\right)^{2}}}

\sf{\Rightarrow \sqrt{\left(4  + 6\right)^{2} + \left(0 - 0\right)^{2}}}

\sf{\Rightarrow \sqrt{10^{2} + 0}}

\sf{\Rightarrow \sqrt{100}}

\purple{\sf{\Rightarrow 10}}

Hence ,the distance between the points (-6 , 0) and (4 , 0) is 10 units.

» Additional information :

  • The distance between the points (x , y) from the origin (0,0)

=> \sf{\sqrt{x^{2} + y^{2}}}

  • Distance Formula can be also written as

\sf{\sqrt{\left(x_{1} - x_{2}\right)^{2} + \left(y_{1} - y_{2}\right)^{2}}}

Similar questions