Math, asked by vbabub1, 8 months ago


2. Find the length of the perpendicular drawn from the point of intersection of the lines
3x + 2y + 4 = 0 and 2x + 5y- 1 = 0 to the straight line 7x + 24y - 15 = 0.​

Answers

Answered by Anonymous
13

\huge\tt\blue{Answer}

.Let P(α, β) be the point of intersection of the lines 3x + 2y + 4 = 0, 2x + 5y – 1 = 0

So,  3α + 2β + 4 = 0 ...... (1)

 

and 2α + 5β – 1 = 0 ..... (2)

Solving (1) and (2) we get

  \sf \:  \frac{ \alpha }{ - 2 - 20}  \:  =  \:  \frac{ \beta }{8 + 3}  \:  =  \: \frac{1}{15  - 4}  \:  \dasharrow \:  \frac{ \alpha }{ - 22}   \:  =  \:  \frac{ \beta }{11}  \: =   \:  \frac{1}{11} \:  \dasharrow \alpha  \:  =  \:  - 2 \comma \: \beta  \: =   \: 1 \\  \\  \sf \:  \therefore \: p \:  =  \: ( - 2  \comma \: 1) \\  \\ \sf \:  perpendicular \: distance \: from \: p( - 2 \comma \: 1) \: to \: 7x + 24y = 15 \: is \\  \\  \sf \:   \frac{ |7( - 2) + 24(1) - 15| }{ \sqrt{7 ^{2} } + \sqrt{24}   ^{2}  }  \:  =  \:  \frac{ | - 14 + 24 - 15| }{ \sqrt{49 + 576} }  \\  \\  \sf \:  \frac{5}{25}  \:  =  \:  \frac{1}{5}

Similar questions
English, 1 year ago