2. Find the radius of curvature at any point a on the curve x=3acosa – acos3a
y= 3asina – asin3a
Answers
Answer:
The radius of curvature is |3asinФcosФ|
Step-by-step explanation:
Given:
x=a\sin^3\thetax=asin
3
θ
y=a\cos^3\thetay=acos
3
θ
Curvature, K=\dfrac{|x'y''-y'x''|}{|(x')^{2}+(y')^{2}|^{\frac{3}{2}}}K=
∣(x
′
)
2
+(y
′
)
2
∣
2
3
∣x
′
y
′′
−y
′
x
′′
∣
x'=3a\sin^2\theta\cos\thetax
′
=3asin
2
θcosθ
x''=a (6\sin \theta\cdot cos^2\theta - 3 \sin^3\theta)x
′′
=a(6sinθ⋅cos
2
θ−3sin
3
θ)
y'=-3a\cos^2\theta\sin\thetay
′
=−3acos
2
θsinθ
y''=-3 a (\cos^3\theta - 2 \sin^2\theta \cos \theta)y
′′
=−3a(cos
3
θ−2sin
2
θcosθ)
Substitute into formula
K=\dfrac{|(3a\sin^2\theta\cos\theta)[-3 a (\cos^3\theta - 2 \sin^2\theta \cos \theta)]-[-3a\cos^2\theta\sin\theta][a (6\sin \theta\cdot cos^2\theta - 3 \sin^3\theta)]|}{|(3a\sin^2\theta\cos\theta)^{2}+(-3a\cos^2\theta\sin\theta)^{2}|^{\frac{3}{2}}}K=
∣(3asin
2
θcosθ)
2
+(−3acos
2
θsinθ)
2
∣
2
3
∣(3asin
2
θcosθ)[−3a(cos
3
θ−2sin
2
θcosθ)]−[−3acos
2
θsinθ][a(6sinθ⋅cos
2
θ−3sin
3
θ)]∣
K=\dfrac{1}{3a|\sin\theta\cos\theta|}K=
3a∣sinθcosθ∣
1
Radius of curvature is inverse of curvature.
R=\dfrac{1}{K}R=
K
1
R=|3a\sin\theta\cos\theta|R=∣3asinθcosθ∣
Answer:
ɢᴏᴏᴅ ᴍᴏʀɴɪɴɢ ᴅᴇᴀʀ...
ʜᴀᴠᴇ ᴀ ɢʀᴇᴀᴛ ᴅᴀʏ ᴀʜᴇᴀᴅ....
»»————><————««