Math, asked by dikshu0516, 6 months ago

2 find the second order partial derivatives of e^x-y​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{e^{x-y}}

\underline{\textbf{To find:}}

\mathsf{Second\;order\;partial\;derivaties\;of\;e^{x-y}}

\underline{\textbf{Solution:}}

\mathsf{Let\;z=e^{x-y}}

\textsf{Differentiate partially with respect to 'x'}

\mathsf{\dfrac{\partial\,z}{\partial\,x}=e^{x-y}}

\textsf{Differentiate again partially with respect to 'x'}

\implies\boxed{\mathsf{\dfrac{\partial^2\,z}{\partial\,x^2}=e^{x-y}}}

\mathsf{z=e^{x-y}}

\textsf{Differentiate partially with respect to 'y'}

\mathsf{\dfrac{\partial\,z}{\partial\,y}=e^{x-y}(-1)=-e^{x-y}}

\textsf{Differentiate again partially with respect to 'y'}

\mathsf{\dfrac{\partial^2\,z}{\partial\,y^2}=-e^{x-y}(-1)}

\implies\boxed{\mathsf{\dfrac{\partial^2\,z}{\partial\,y^2}=e^{x-y}}}

\underline{\textbf{Find more:}}

Find the second order partial derivatives of F(x.y) = (3x + 2y).4​

https://brainly.in/question/31686292

If u=x³y³/x³+y³,prove that x du/dx + y du/dy=3u​

https://brainly.in/question/35340172

Similar questions