Math, asked by ishanvi916, 9 months ago

2.
Find the sum of the zeroes of quadratic polynomial
x2 + 7x + 10.​

Answers

Answered by SarcasticL0ve
5

\star\;{\underline{\underline{\sf{\pink{Solution:-}}}}}

\rule{200}{3}

\implies x² + 7x + 10 = 0

\implies x² + 2x + 5x + 10 = 0

\implies x(x + 2)+5(x + 2) = 0

\implies (x + 2)(x + 5) = 0

\implies (x + 2)(x + 5) = 0

Either (x + 2) or (x + 5) is equals to 0,

\implies (x + 2) = 0 ; (x + 5) = 0

Therefore, x = -2 , -5

We know that,

★ Sum of Zeroes ( \sf \alpha + \beta ) = \sf \dfrac{-b}{a}

\implies ( \sf \alpha + \beta ) = -2 + (-5) = -7

\implies \sf \dfrac{-b}{a} = \sf \dfrac{-7}{1}

\;\;\;\;{\underline{\underline{\sf{\purple{\dag\;Hence\; Solved!!}}}}}

\rule{200}{3}

Answered by InfiniteSoul
2

\sf{\huge{\underline{\boxed{\pink{\mathfrak{ Question}}}}}}

Find the sum of the zeroes of quadratic polynomial

x^2 + 7x + 10.

\sf{\huge{\underline{\boxed{\pink{\mathfrak{ solutionn}}}}}}

\implies p(x) = x^2 + 7x + 10

  • zeros of the polynomial is tge value of x where p(x) = 0
  • putting p(x) = 0

\implies x^2 + 7x + 10 = 0

  • we can find the roots using middle term split method .

\implies \sf x^2 + 5x + 2x + 10 = 0

\implies \sf x ( x + 5 ) + 2 (x + 5 ) = 0

\implies \sf ( x + 2 )( x + 5 ) = 0

so x = -2 , -5

Therefore ;

α = -2 , β = -5 are the zeros of the Polynomial .

  • comparing eq with  ax^2 + bx + c

\begin{tabular}{|c|c|}\cline{1-2}\sf a &\sf 1 \\\cline{1-2}\sf b &\sf 7 \\\cline{1-2}\sf c &\sf 10\\\cline{1-2}\end{tabular}

sum of zeros = \sf\dfrac{-b}{a}

α + β = \sf\dfrac{-7}{1}

-2 + (- 5) = - 7

- 7 = - 7

\sf{\bold{\underline{\boxed{\red{sum\: of \: zeros = \: -7 }}}}}

______________________❤

Similar questions
Math, 9 months ago