Math, asked by megha835766, 6 months ago

2.
Find the total surface area of the cylinder having the following dimensions.
Radius of base = 35 cm and height = 2.5 m.​

Answers

Answered by ITZYUVIHERE
7

{\bigstar}GIVEN{\bigstar}

CYLINDER:

  • Radius (r) = 35cm
  • height (h) = 2.5cm

{\bigstar}SOLUTION{\bigstar}

CSA of a cylinder

2 π r h cm²

2 ×  \frac{22}{7} × 35 × 2.5 cm²

44 × 5 × 2.5

\boxed{\sf{ 550cm² }}

TSA of a cylinder

2πr (h+r) cm²

2 ×  \frac{22}{7} × 35 ( 2.5 + 35)

44 × 5 (37.5)

\boxed{\sf{ 8250cm² }}

◆ ━━━━━━━━❪✪❫━━━━━━━━ ◆

CYLINDER:

TSA = 2πr (h+r) sq.units

CSA = 2πrh sq.units

volume = πr² h cu.units

Answered by Anonymous
10
  • GIVEN:-

Radius of base = 35 cm

Height = 2.5 m.

  • To Find:-

Total surface area of the cylinder.

  • SOLUTION:-

Radius is given in cm so we have to convert it in m.

1 m = 100 cm

1 cm = 1/100 cm

35 cm = 35/100 cm

So, radius = 0.35 m.

We know that,

\large\boxed{\sf{TSA=2πr(h+r)}}

where,

r = radius

h = height

π = 22/7 or 3.14

Putting the values,

\large\Rightarrow{\sf{TSA=2πr(h+r)}}

\large\Rightarrow{\sf{TSA=2\times3.14\times0.35(2.5+0.35)}}

\large\Rightarrow{\sf{TSA=2\times3.14\times0.35\times2.85}}

\large\Rightarrow{\sf{TSA=6.26\:{m}^{2}}}

\large{\red{\underline{\boxed{\therefore{\sf{\red{Total\:surface\:area\:=6.3\:{m}^{2}}}}}}}}

  • EXPLORE MORE:-

  • TSA = 2πr (h+r) square units

  • CSA = 2πrh square units

  • volume = πr² h cube units
Similar questions