2
Find the value of (3+2/i)(i⁶-i⁷)(1+i¹¹)
Answers
Answer:
6i+4
Step-by-step explanation:
The given expression is (3+\frac{2}{i}))i^6-i^7)(1+i^{11})(3+
i
2
))i
6
−i
7
)(1+i
11
)
We can rewrite this expression as
(3+\frac{2}{i})((i^2)^3-(i^2)^3i(1+(i^2)^5i)(3+
i
2
)((i
2
)
3
−(i
2
)
3
i(1+(i
2
)
5
i)
We know that i^2=-1i
2
=−1
Thus, the expression becomes
\begin{gathered}(3+\frac{2}{i})((-1)^3-(-1)^3i(1+(-1)^5i)\\\\=(3+\frac{2}{i})(-1+i)(1-i)\end{gathered}
(3+
i
2
)((−1)
3
−(−1)
3
i(1+(−1)
5
i)
=(3+
i
2
)(−1+i)(1−i)
Now. rationalize the denominator by multiplying numerator and denominator by i
\begin{gathered}(3+\frac{2}{i}\cdot\frac{i}{i})(-1+i)(1-i)\\\\=(3+\frac{2i}{i^2}(-1+i)(1-i)\\\\=(2i-3)(1-i)(1-i)\\\\=(2i-3)(1+i^2-2i)\\\\=(2i-3)(1-1-2i)\\\\=2i(3-2i)\\\\=6i-4i^2\\\\=6i+4\\\\\end{gathered}
(3+
i
2
⋅
i
i
)(−1+i)(1−i)
=(3+
i
2
2i
(−1+i)(1−i)
=(2i−3)(1−i)(1−i)
=(2i−3)(1+i
2
−2i)
=(2i−3)(1−1−2i)
=2i(3−2i)
=6i−4i
2
=6i+4
Therefore, the simplified form is 6i+4