Math, asked by yashbawane73, 3 months ago

2) Find the value of cos 15°​

Answers

Answered by fridah4909
0

Answer:

0.9659

Step-by-step explanation:

Answered by sharanyalanka7
1

Answer:

\sf\dfrac{\sqrt{3} + 1}{2\sqrt{2}}

Step-by-step explanation:

To Find :-

Value of cos15°​

Solution :-

15°​ = 45°​ - 30°​

Applying "cos" on both sides :-

cos15°​ = cos(45°​ - 30°​)

Since, cos(A - B) = cosAcosB + sinAsinB

cos(45°​ - 30°​) = cos45°​cos30°​ + sin45°​sin30°​

cos45°​ = \sf\dfrac{1}{\sqrt{2}}

sin45°​ = \sf\dfrac{1}{\sqrt{2}}

cos30°​ = \sf\dfrac{\sqrt{3}}{2}

sin30°​ = \sf\dfrac{1}{2}

= \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}}\times \dfrac{1}{2}

= \dfrac{\sqrt{3}}{2\sqrt{2}} + \dfrac{1}{2\sqrt{2}}

= \dfrac{\sqrt{3} + 1}{2\sqrt{2}}

cos15°​ = \sf\dfrac{\sqrt{3} + 1}{2\sqrt{2}}

Similar questions