Math, asked by aryanmusale201, 2 months ago

2
Find the value of k for which quadratic equation has real and equal roots : 4x^2+Kx+9=0

Answers

Answered by amansharma264
48

EXPLANATION.

Quadratic equation.

⇒ 4x² + kx + 9 = 0.

As we know that,

⇒ D = Discriminant Or b² - 4ac.

Roots are real and equal : D = 0.

⇒ (k)² - 4(4)(9) = 0.

⇒ k² - 144 = 0.

⇒ k² = 144.

⇒ k = √144.

⇒ k = 12.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.


pandaXop: Awesome ✨
Answered by Anonymous
72

Answer:

Given :-

  • A quadratic equation has real and equal roots of 4x² + kx + 9 = 0.

To Find :-

  • What is the value of k.

Formula Used :-

\clubsuit Discriminate Formula :

\longmapsto \sf\boxed{\bold{\pink{Discriminate\: (D) =\: b^2 - 4ac}}}\\

Solution :-

Given equation :

\bigstar\: \: \: \sf\bold{\purple{4x^2 + kx + 9 = 0}}

where,

  • a = 4
  • b = k
  • c = 9

According to the question by using the formula we get,

\longrightarrow \sf Discriminate\: (D) =\: (k)^2 - 4(4)(9) =\: 0\\

\longrightarrow \sf Discriminate\: (D) =\: (k)^2 - 4 \times 4 \times 9 =\: 0\\

\longrightarrow \sf Discriminate\: (D) =\: (k)^2 - 16 \times 9 =\: 0\\

\longrightarrow \sf Discriminate\: (D) =\: (k)^2 =\: (k)^2 - 144 =\: 0

\longrightarrow \sf Discriminate\: (D) =\: (k)^2 =\: 144

\longrightarrow \sf Discriminate\: (D) =\: k =\: \sqrt{144}

\longrightarrow \sf\bold{\red{Discriminate\: (D) =\: k =\: 12}}

\therefore The value of k is 12.


pandaXop: Awesome ✨
Similar questions