Math, asked by naynashah336, 1 month ago

2. Find the volume of the right circular
cylinder which has the base radius of
21 m and height 14 m.​

Answers

Answered by sethrollins13
156

Given :

  • Radius of Cylinder is 21 m .
  • Height of Cylinder is 14 m .

To Find :

  • Volume of Cylinder .

Solution :

\longmapsto\tt{Radius=21\:m}

\longmapsto\tt{Height=14\:m}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{22}{{\cancel{7}}}\times{21}\times{21}\times{{\cancel{14}}}}

\longmapsto\tt{22\times{21}\times{21}\times{2}}

\longmapsto\tt\bf{19404\:{cm}^{3}}

So , The Volume of Cylinder is 19404 cm³ .

____________________

  • Curved Surface Area of Cylinder = 2πrh
  • Total Surface Area of Cylinder = 2πr(r+h)
  • Volume of Cylinder = πr²h

Here :

  • r = radius
  • h = height
  • π = 3.14 or 22/7

____________________

Answered by Anonymous
181

Answer:

Given :-

  • A right circular cylinder whose base radius is 21 cm and the height is 14 cm.

To Find :-

  • What is the volume of a right circular cylinder.

Formula Used :-

\clubsuit Volume Of Right Circular Cylinder Formula :

\mapsto \sf\boxed{\bold{\pink{Volume_{(Cylinder)} =\: {\pi}r^2h}}}

where,

  • π = pie or 22/7
  • r = Radius
  • h = Height

Solution :-

Given :

\bigstar\: \: \bf{Radius\: (r) =\: 21\: cm}

\bigstar\: \: \bf{Height\: (h) =\: 14\: cm}

According to the question by using the formula we get,

\leadsto \sf\bold{\purple{Volume_{(Cylinder)} =\: {\pi}r^2h}}

As we know that : [ π = 22/7 ]

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times (21)^2 \times 14

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times 21 \times 21 \times 14

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times 441 \times 14

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22}{\cancel{7}} \times {\cancel{6174}}

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22}{1} \times 882

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{22 \times 882}{1}

\longrightarrow \sf Volume_{(Cylinder)} =\: \dfrac{19404}{1}

\longrightarrow \sf\bold{\red{Volume_{(Cylinder)} =\: 19404\: cm^3}}

{\small{\bold{\underline{\therefore\: The\: volume\: of\: the\: right\: circular\: cylinder\: is\: 19404\: cm^3\: .}}}}

Similar questions
Math, 9 months ago