Math, asked by tejaskumar1641958, 2 months ago

2. Find the zeros of the polynomial x² + x - p(p+1).​

Answers

Answered by 12thpáìn
4

Given

  • f(x)=x² + x - p(p+1)

To Find

  • Zeros of the polynomial

Solution

______Meathod 1 ______

  • x²+x-p(p+1)=0

  • On factorising we get,

  • x²+(p+1)x-px-p(p+1)=0

  • x(x+p+1) -p(x+p+1)=0

  • (x+p+1)(x-p)=0

  • x=-p-1, and x= p

The zeros of polynomial are: p-1 and p.

______Meathod 2 ______

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x²+x-p(p+1)=0

On Comparing with ax²+bx+c = 0, we get,

 \:  \:  \:  \:  \\ \sf a= 1  \:  \: , \:  \:  b = 1 \:  ,  \: c = -p(p+1)  \\  \\

By Quadratic Equation

\sf~~~\implies~~~~ x = \dfrac{-b±\sqrt{b²-4ac}}{2a}

  • Putting the values

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{1²-4 \times 1 \times  - p(p + 1)}}{2 \times 1}

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{1-4 \times   \{ -  {p}^{2}    - p \}}}{2 }

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{1 + 4 {p}^{2} + 4p  }}{2 }

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{ 4 {p}^{2} + 4p  + 1}}{2 }

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{ (2 {p})^{2} + 2(2p)1  +  {1}^{2} }}{2 }

  • Using identity a²+2ab+b² = (a+b)²

\sf~~~\implies~~~~ x = \dfrac{-1±\sqrt{ { (2p + 1) }^{2} }}{2 }

\sf~~~\implies~~~~ x = \dfrac{-1±{ (2p + 1) }}{2 }

\sf~~~~~~~ x = \dfrac{-1 + { (2p + 1) }}{2 } \:  \:  \:  \:  \:  \:  \: \bigg|  \:  \:  \:  \:  \:  x = \dfrac{-1 - { (2p + 1) }}{2 }

\sf~~~~~~~ x = \dfrac{-1 + 2p + 1}{2 } \:  \:  \:  \:  \:  \:  \: \bigg|  \:  \:  \:  \:  \:  x = \dfrac{-1  + 2p  -  1}{2 }

\sf~~~~~~~ x = \dfrac{ 2p }{2 } \:  \:  \:  \:  \:  \:  \: \bigg|  \:  \:  \:  \:  \:  x = \dfrac{ 2p  -  2}{2 }

\sf~~~~~~~ x = p \:  \:  \:  \:  \:  \:  \: \bigg|  \:  \:  \:  \:  \:  x = \dfrac{ 2(p  -  1)}{2 }

\sf~~~~~~~ x = p \:  \:  \:  \:  \:  \:  \: \bigg|  \:  \:  \:  \:  \:  x = p - 1 \\  \\

The zeros of polynomial are: p and p-1 .

Answered by rosoni28
5

\huge \mathbb{ \red {★᭄ꦿ᭄S} \pink{ᴏ}\purple{ʟᴜ} \blue {ᴛ} \orange{ɪ} \green{ᴏɴ★᭄ꦿ᭄}}

\tt \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x²+x-p(p+1)=0

  • On Comparing with ax²+bx+c = 0, we get

\begin{gathered}\sf a= 1 \: \: , \: b = 1 \: , \: c = -p(p+1) \end{gathered}

BY QUADRATIC EQYATION

\tt~~~\implies~~~~  x = \dfrac \red{-b±\sqrt{b²-4ac}} \pink{2a}

  • BY PUTTING THE VALUES

\tt~~~\implies~~~~ x = \dfrac \blue{-1±\sqrt{1²-4 \times 1 \times - p(p + 1)}} \purple{2 \times 1}

\tt~~~\implies~~~~ x = \dfrac \red{-1±\sqrt{1-4 \times \{ - {p}^{2} - p \}}} \orange{2 }

\tt~~~\implies~~~~ x = \dfrac \pink{-1±\sqrt{1 + 4 {p}^{2} + 4p }} \purple{2 }

\tt~~~\implies~~~~ x = \dfrac \blue{-1±\sqrt{ 4 {p}^{2} + 4p + 1}} \green{2 }

\tt~~~\implies~~~~ x = \dfrac \purple{-1±\sqrt{ (2 {p})^{2} + 2(2p)1 + {1}^{2} }} \red{2 }

  • Using identity a²+2ab+b² = (a+b)²

\tt~~~\implies~~~~ x = \dfrac \orange{-1±\sqrt{ { (2p + 1) }^{2} }} \blue{2 }

\tt~~~\implies~~~~ x = \dfrac \red{-1±{ (2p + 1) }} \green{2 }

\tt~~~~~~~ x = \dfrac \purple{-1 + { (2p + 1) }} \red{2 } \: \: \: \: \: \: \: \bigg| \: \: \: \: \: x = \dfrac \green{-1 - { (2p + 1) }} \pink{2 }

\tt~~~~~~~ x = \dfrac \green{-1 + 2p + 1} \red{2 } \: \: \: \: \: \: \: \bigg| \: \: \: \: \: x = \dfrac \orange{-1 + 2p - 1} \purple{2 }

\tt~~~~~~~ x = \dfrac \green{ 2p } \pink{2 } \: \: \: \: \: \: \: \bigg| \: \: \: \: \: x = \dfrac \red{ 2p - 2} \orange{2 }

\sf~~~~~~~ x =  \blue{p} \: \: \: \: \: \: \: \bigg| \: \: \: \: \: x = \dfrac \red{ 2(p - 1)} \pink{2}

\begin{gathered}\tt~~~~~~~ x =  \pink{p} \: \: \: \: \: \: \: \bigg| \: \: \: \: \: x =  \red{p - 1} \\ \\ \end{gathered}

  • The zeros of polynomial are: p and p-1 .
Similar questions