2. Find x and y in each the following??
Answers
Step-by-step explanation:
1) y = 180 - 100 = 80
x = 180 - 60 + 80
x = 40
2) 3x + 2x + x = 180
6x = 180
x = 30
3x = 90
2x = 60
x = 30
y = 180 - 30 = 150
3) y = 180 - 120 = 60
x = 180 - 80 + 60
= 40
Answer:
(1). <y +<abp= 180( linear pair)
<y=180-100
<y=80
then, in ∆ ABC
<A+<B+<C = 180 ( angle sum property of triangle)
<x+60+80=180
<x+140=180
<x=40.
(2). in ∆ABC
<x+<2x+<3x=180(angle sum property of triangle )
6x=180
x=180/6
x=30°
and then
angles measure are
x=30,2x=30 × 2= 60, 3x=30×3=90
hence,
<y+<x=180(linear pair)
<y+30= 180
<y=180-30
<y=150°
(3).<y+120=180(linear pair)
<y=180-120
<y=60°
then, we can take 2nd angle of ∆ be <b
so,
100+<b=180
<b=180-100
<b =80°
now,in ∆
< x +<y+<b = 180(angle sum property of triangle )
<x+60+80=180
<x=180-140
<x°=40°
please mark me as brainiest