(2) . Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.
• Quality Answer Mark As Brainliest
• Spammers Stay Away!!.
Answers
Required Answer:-
Question:
- Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.
Solution:
We have,
➡ (1 + cosα)(1 + Cosβ)(1 + cosγ) = (1 - cosα)(1 – cosβ)(1 – cosγ)
Multiplying both sides by (1 + cosα)(1 + Cosβ)(1 + cosγ), we get,
➡ [(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (1 - cosα)(1 – cosβ)(1 – cosγ) × (1 + cosα)(1 + Cosβ)(1 + cosγ)
➡ [(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (1 - cos²α)(1 – cos²β)(1 – cos²γ)
➡ [(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (sin²α)(sin²β)(sin²γ)
➡ [(1 + cosα)(1 + Cosβ)(1 + cosγ)] = ± sinα sinβ sinγ
➡ Hence, one of the values of (1 + cosα) (1 + Cosβ) (1 + cosγ) is sinα sinβ sinγ
Again, we have,
➡ (1 + cosα)(1 + Cosβ)(1 + cosγ) = (1 - cosα)(1 – cosβ)(1 – cosγ)
Multiplying both sides by (1 - cosα)(1 – cosβ)(1 – cosγ), we get,
➡ (1 + cosα)(1 + Cosβ)(1 + cosγ)(1 - cosα)(1 – cosβ)(1 – cosγ) = [(1 - cosα)(1 – cosβ)(1 – cosγ)]²
➡ [(1 - cosα)(1 – cosβ)(1 – cosγ)]² = (1 - cos²α)(1 – cos²β)(1 – cos²γ)
➡ [(1 - cosα)(1 – cosβ)(1 – cosγ)]² = (sin²α)(sin²β)(sin²γ)
➡ (1 - cosα)(1 – cosβ)(1 – cosγ) = ± (sinα)(sinβ)(sinγ)
➡ Hence, one of the values of (1 - cosα)(1 – cosβ)(1 – cosγ) is (sinα)(sinβ)(sinγ)
Thus, one of the values of each member of this equality is (sinα)(sinβ)(sinγ).
(Hence Proved)
Formula Used:
- sin²(x) = 1 - cos²(x)
Answer:
Given :-
(1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ)
To Find :-
The values of each member of this equality is sinα sinβ sinγ.
SoluTion :-
Here,
We will first multiply both sides by (1 + cosα) (1 + Cosβ) (1 + cosγ)
Therefore :-
One of the values of each member of this equality is sinα sinβ sinγ.