Math, asked by MystícPhoeníx, 4 months ago

(2) . Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.

• Quality Answer Mark As Brainliest
• Spammers Stay Away!!.​

Answers

Answered by anindyaadhikari13
172

Required Answer:-

Question:

  • Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.

Solution:

We have,

➡ (1 + cosα)(1 + Cosβ)(1 + cosγ) = (1 - cosα)(1 – cosβ)(1 – cosγ)

Multiplying both sides by (1 + cosα)(1 + Cosβ)(1 + cosγ), we get,

[(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (1 - cosα)(1 – cosβ)(1 – cosγ) × (1 + cosα)(1 + Cosβ)(1 + cosγ)

[(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (1 - cos²α)(1 – cos²β)(1 – cos²γ)

[(1 + cosα)(1 + Cosβ)(1 + cosγ)]² = (sin²α)(sin²β)(sin²γ)

➡ [(1 + cosα)(1 + Cosβ)(1 + cosγ)] = ± sinα sinβ sinγ

Hence, one of the values of (1 + cosα) (1 + Cosβ) (1 + cosγ) is sinα sinβ sinγ

Again, we have,

➡ (1 + cosα)(1 + Cosβ)(1 + cosγ) = (1 - cosα)(1 – cosβ)(1 – cosγ)

Multiplying both sides by (1 - cosα)(1 – cosβ)(1 – cosγ), we get,

➡ (1 + cosα)(1 + Cosβ)(1 + cosγ)(1 - cosα)(1 – cosβ)(1 – cosγ) = [(1 - cosα)(1 – cosβ)(1 – cosγ)]²

[(1 - cosα)(1 – cosβ)(1 – cosγ)]² = (1 - cos²α)(1 – cos²β)(1 – cos²γ)

[(1 - cosα)(1 – cosβ)(1 – cosγ)]² = (sin²α)(sin²β)(sin²γ)

➡ (1 - cosα)(1 – cosβ)(1 – cosγ) = ± (sinα)(sinβ)(sinγ)

Hence, one of the values of (1 - cosα)(1 – cosβ)(1 – cosγ) is (sinα)(sinβ)(sinγ)

Thus, one of the values of each member of this equality is (sinα)(sinβ)(sinγ).

(Hence Proved)

Formula Used:

  • sin²(x) = 1 - cos²(x)

MystícPhoeníx: Awesome!!
anindyaadhikari13: Thank you.
Answered by Anonymous
98

Answer:

Given :-

(1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ)

To Find :-

The values of each member of this equality is sinα sinβ sinγ.

SoluTion :-

 \tt \: (1 +  \cos( \alpha ) )(1 +  \cos( \beta ) )(1 +  \cos( \gamma )  = (1 -  \cos( \alpha ) )(1 -  \cos( \beta ) )(1 -  \cos( \gamma ) )

Here,

We will first multiply both sides by (1 + cosα) (1 + Cosβ) (1 + cosγ)

 \tt \: (1 +  \cos( \alpha )  ){}^{2} (1 +  \cos( \beta ))  {}^{2} (1 +  \cos( \gamma ) ) {}^{2}

 \tt \: (1  -  { \cos }^{}  \alpha )(1 -  { \cos }^{}  \beta )(1 -  \cos   \gamma )(1 +  \cos( \alpha ) )(1 +  \cos( \beta ))(1 +  \cos( \gamma ) )

 \tt \: (1+  \cos( \alpha )) {}^{2}  (1+ \cos( \beta ) ) {}^{2} (1+ \cos( \gamma ) ) {}^{2}

 \tt \: (1 -  \cos {}^{2}  \alpha )(1 -  { \cos }^{2}  \beta )(1 -  { \cos( \gamma ) }^{2}

 \tt \:  (1 +  \cos( \alpha ) ) {}^{2}  (1 +  \cos( \beta ) ) {}^{2} (1 +  { \cos( \gamma ) )}^{2}  =  \sin {}^{2}  \alpha  \:  \sin {}^{2}  \beta  { \sin}^{2}  \gamma

 \tt \: (1 +  \cos( \alpha ) )(1 +  \cos( \beta ) )(1 +  \cos( \gamma ) ) ± \:  \sin \alpha  \sin \beta  \sin \gamma

Therefore :-

One of the values of each member of this equality is sinα sinβ sinγ.


MystícPhoeníx: Marvellous !! Keep it Up :)
Similar questions