2) . Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.
• Quality Answer Mark As Brainliest
• Spammers Stay Away!!.
Answers
Answered by
2
Answered by
1
Wehave: (1+cosα)(1+cosβ)(1+cosγ)(1−cosα)(1−cosβ)(1−cosγ)Multiplying bothsidesby(1+cosα)(1+cosβ)(1+cosγ),weget(1+cosα)2(1+cosβ)2(1+cosγ)2(1−cosα)(1−cosβ)(1−cosγ)(1+cosα)(1+cosβ)(1+cosγ) ⇒(1+cosα)2(1+cosβ)2(1+cosγ)2=(1−cos2α)(1−cos2β)(1−cos2γ)⇒(1+cosα)2(1+cosβ)2(1+cosγ)2=sin2αsin2βsin2γ⇒(1+cosα)(1+cosβ)(1+cosγ)=±sinαsinβsinγHence,oneofthevaluesof (1+cosα)(1+cosβ)(1+cosγ) is sinαsinβsinγ
Similar questions
English,
1 month ago
English,
1 month ago
World Languages,
1 month ago
Hindi,
3 months ago
History,
9 months ago
Social Sciences,
9 months ago