Math, asked by sejaldurafe2004, 7 months ago

2+i/(3-i)(1+2i) state the value of a and b​

Answers

Answered by suyashjain2446
0

Answer:

Where is a and b variable in the question

Answered by Anonymous
7

 \bf \underline \blue{Question :  - } \\  \\  \bf \:  \frac{2   +  i}{(3  -  i)(1 + 2i)}

 \bf \underline \blue{Answer :  - } \\  \\  \bf \large \implies \: \frac{2 + i}{(3 - i)( 1 + 2i)}   \\  \\ \bf \large \implies \: \frac{(2 + i)}{3 + 6i - i - 2 {i}^{2} }  \\  \\ \bf \large \implies \: \frac{2 + i}{3 + 5i - 2( - 1)}  \\  \\ \bf \large \implies \: \frac{2 + i}{5 + 5i}  \\  \\  \sf \: rationalize \:  \: the \:  \: denominator :  -  \\  \\ \bf \large \implies \: \frac{2 + i}{5 + 5i}  \times  \frac{5 - 5i}{5 - 5i}  \\  \\ \bf \large \implies \: \frac{10 - 10i - 5i -  {5i}^{2} }{25 -  {25i}^{2} }  \\  \\ \bf \large \implies \: \frac{10 - 15i + 5}{50}  \\  \\ \bf \large \implies \: \frac{15 - 15i}{50}  \\  \\ \bf \large \implies \: \frac{15(1 - i)}{50}  \\  \\ \bf \large \implies \: \frac{3 - 3i}{10}  \\  \\ \bf \large \implies \: \frac{3}{10}  -  \frac{3}{10} i = a + bi

Similar questions