(2+i)x^2-(5-i)x+2(1-i)=0 solve this quadratic equation......
with easy method and other any method
Answers
Answered by
3
Answer:
1 - i
(4 - 2i)/5
Step-by-step explanation:
(2+i)x²-(5-i)x+2(1-i)=0
D = ( -b ± √b² - 4ac )/2a
b = -(5 - i)
c = 2(1 - i)
a = 2 + i
D = √25 + i² - 10i - 4*2(2 - i² - i)
= √ 24 - 10i - 24 + 8i
= √-2i
= 1 - i or i - 1
(5 - i + 1 - i )/2(2 + i)
= (3 - i)/(2 + i)
= (3 - i) (2 - i) /(5)
= (5 - 5i)/5
= 1 - i
(5 - i + i - 1 )/2(2 + i)
= (4)/2(2 + i)
= (2) (2 - i) /(5)
=(4 - 2i)/5
Answered by
0
Answer:
(2+i)x²-(5-i)x+2(1-i) = 0 ⇒ 2x²+ix²-5x+ix+2-2i =0 ⇒ 2x²-5x+2 = -ix²-ix+2i ⇒ (x-4)(x-1) = -i(x²+x-2) ⇒ (x-4)(x-1) = -i(x+2)(x-1) ⇒ (x-4)/(x+2) = -i Squaring both sides We get :- (x-4)²/(x+2)² = i² ⇒ (x-4)² = -(x+2)² ⇒ x²+16-8x = -x²-4-4x ⇒ 2x²+20-4x = 0 ⇒ x²+10-2x = 0 ⇒ x²-2x+10 = 0 Now solve by yourself using quadratic formula Hope it helps You.☺️ x2 - 4x +10=0
Similar questions