2. If 1 || m, 21 = 60°, Z2 = 120°, 24 = 120°, find measure of each of the remaining angles. 2 3 4 6. 5 co 7 8.
Answers
Answer:
l II m and p is their transversal and 1 = 120°
∠1 + ∠2 = 180 °(Straight line)
120° + ∠2 = 180° > ∠2 = 180° - 120° = 60°
∠2 = 60°
But ∠1 = ∠3 (Vertically opposite angles)
∠3 = ∠1 = 120°
Similarly ∠4 = ∠2
(Vertically opposite angles)
∠4 = 60°
∠5 = ∠1 (Corresponding angles)
∠5 = 120°
Similarly ∠6 = ∠2 (Corresponding angles)
∠6 = 60°
∠7 = ∠5 (Vertically opposite angles)
∠7 = 120°
And ∠8 = ∠6 (Vertically opposite angles)
∠8 = 60°
Hence ∠2 = 60°, ∠3 = 120°, ∠4 = 60°, ∠5 = 120°, ∠6 = 60°, ∠7 = 120° and ∠8 = 60°
Step-by-step explanation:
please mark me as brainliest
ʟ ɪɪ ᴍ ᴀɴᴅ ᴘ ɪs ᴛʜᴇɪʀ ᴛʀᴀɴsᴠᴇʀsᴀʟ ᴀɴᴅ 1 = 120°
∠1 + ∠2 = 180 °(sᴛʀᴀɪɢʜᴛ ʟɪɴᴇ)
120° + ∠2 = 180° > ∠2 = 180° - 120° = 60°
∠2 = 60°
ʙᴜᴛ ∠1 = ∠3 (ᴠᴇʀᴛɪᴄᴀʟʟʏ ᴏᴘᴘᴏsɪᴛᴇ ᴀɴɢʟᴇs)
∠3 = ∠1 = 120°
sɪᴍɪʟᴀʀʟʏ ∠4 = ∠2
(ᴠᴇʀᴛɪᴄᴀʟʟʏ ᴏᴘᴘᴏsɪᴛᴇ ᴀɴɢʟᴇs)
∠4 = 60°
∠5 = ∠1 (ᴄᴏʀʀᴇsᴘᴏɴᴅɪɴɢ ᴀɴɢʟᴇs)
∠5 = 120°
sɪᴍɪʟᴀʀʟʏ ∠6 = ∠2 (ᴄᴏʀʀᴇsᴘᴏɴᴅɪɴɢ ᴀɴɢʟᴇs)
∠6 = 60°
∠7 = ∠5 (ᴠᴇʀᴛɪᴄᴀʟʟʏ ᴏᴘᴘᴏsɪᴛᴇ ᴀɴɢʟᴇs)
∠7 = 120°
ᴀɴᴅ ∠8 = ∠6 (ᴠᴇʀᴛɪᴄᴀʟʟʏ ᴏᴘᴘᴏsɪᴛᴇ ᴀɴɢʟᴇs)
∠8 = 60°
ʜᴇɴᴄᴇ ∠2 = 60°, ∠3 = 120°, ∠4 = 60°, ∠5 = 120°, ∠6 = 60°, ∠7 = 120° ᴀɴᴅ ∠8 = 60°.