Math, asked by aayushkanwar76, 1 month ago

2.  If 3x + 2y = 12 and xy = 6, find the value of 9x2 + 4y2.

3.  Write the following cubes in the expanded form:

      (i)   (3a + 4b)3

      (ii)   (5p – 3q)3

4.  If  find the values of each of the following:

      (i)   

      (ii)   

5.  If  then evaluate 


6.  If a + b + c = 15 and a2 + b2 + c2 = 83, find the value of a3 + b3 + c3 – 3abc.

7.  Factorize:

      (i)   6ab – b2 + 12ac – 2bc

      (ii)   9(2a – b)2 – 4(2a – b) – 13

8.  If x3 + ax2 – bx + 10 is divisible by x2 – 3x + 2, find the values of a and b.

9.  Using factor theorem, factorize each of the following polynomials:

      (i)   x3 – 6x2 + 3x + 10

      (ii)   2y3 – 5y2 – 19y + 42​

Answers

Answered by pradeepy9182
0

Answer:

3x+2y=12

Squaring both sides, we get

(3x+2y)

2

=144

⇒9x

2

+4y

2

+2×3x×2y=144

⇒9x

2

+4y

2

=144−12xy

⇒9x

2

+4y

2

=144−12×6 since xy=6

⇒9x

2

+4y

2

=144−72=72

∴9x

2

+4y

2

=72

2 The given statement is:]

(3a+4b)^3(3a+4b)

3

Using the identity (a+b)^3=a^3+b^3+3a^2b+3ab^2(a+b)

3

=a

3

+b

3

+3a

2

b+3ab

2

, we have

=(3a)^3+(4b)^3+3(3a)^2(4b)+3(3a)(4b)^2(3a)

3

+(4b)

3

+3(3a)

2

(4b)+3(3a)(4b)

2

=27a^3+64b^3+108a^2b+144ab^227a

3

+64b

3

+108a

2

b+144ab

2

Similar questions