Math, asked by ulkashah12345, 5 months ago

2. If (-8, 4). (-2,4) and (5, a) are collinear
points, then find the value of a.​

Answers

Answered by Seafairy
28

The value of a in the given triangle is 4.

Given :

the three vertices of the triangle is collinear (0)

The vertices are (-8,4),(-2,4) and (5,a)

To Find :

the value of a

Formula Applied :

\text{Area of Triangle}=\frac{1}{2} ((x_1y_2+x_2y_3+x_3y_1)-(x_2y_1+x_3y_2+x_1y_3))

Solution :

Let the vertices of the triangle as :-

A(-8,4), B(-2,4) and C(5,a)

A,B and C are vertices of the triangle in which coordinates are : x_1=-8,y_1=4\\x_2=-2,y_2=4\\x_3=5,y_3=a

Since we know the area of triangle = 0(\because 0 = colinear )

\text{Area of Triangle}=\frac{1}{2} ((x_1y_2+x_2y_3+x_3y_1)-(x_2y_1+x_3y_2+x_1y_3))

Hence substitute the values in formula,

0=(((-8)(4) +(-2)(a)+(5)(4))-((4)(-2)+(4)(5)+(a)(-8)))

0=((-32-2a+20)-(-8+20-8a))

0=((-12-2a)-(12-8a))

0=(-12-2a-12+8a)

0=(-24+6a)

6a=24

a=\frac{24}{6}

\textbf{a = 4}

_______________________________________

\large\textbf{Explore More} :

\text{Area of Triangle}=\frac{1}{2} ((x_1y_2+x_2y_3+x_3y_1)-(x_2y_1+x_3y_2+x_1y_3))

The following pictorial representation helps us to write the above formula

\text{Area of triangle}=\frac{1}{2} \left(\begin{array}{cccc}x_1&x_2&x_3&x_1\\y_1&y_2&y_3&y_1\end{array}\right)

\textbf{Collinearity of three points} :

\impliesIf three distinct points A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3) are colinear, then we cannot form a triangle because for such a triangle there will be no altitude(height).

\impliesTherefore, three points A(x_1,y_1),B(x_2,y_2)  and C(x_3,y_3)will be collinear if the area ΔABC = 0.

\implies Similarly, if the area of ΔABC is zero, then the three points lie on the same straight line.

\implies Thus, three distinct points A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3) will be collinear if and only if area of ΔABC=0

Similar questions