2) If a + 1/a = m and a - 1/a = n, find the value of
m²- n²
Answers
m = a + 1/a
therefore m^2 = ( a + 1/a)^2
{ (a + b)^2 = a^2 + b^2 + 2ab } and {(a - b)^2 = a^2 + b^2 - 2ab}
so,
m^2 = a^2 + 1/a^2 + 2
n^2 = a^2 + 1/a^2 - 2
therefore m^2 - n^2 = (a^2 + 1/a^2 + 2) -(a^2 + 1/a^2 -2)
= a^2 + 1/a^2 + 2 -a^2 - 1/a^2 + 2
= 4
Answer :
m² - n² = 4
Solution :
Given :
a + 1/a = m -------(1)
a - 1/a = n -------(2)
To find :
m² - n² = ?
Now ,
Adding eq-(1) and (2) , we get ;
=> a + 1/a + a - 1/a = m + n
=> 2a = m + n
=> m + n = 2a ---------(3)
Now ,
Subtracting eq-(2) from (1) , we get ;
=> (a + 1/a) - (a - 1/a) = m - n
=> a + 1/a - a + 1/a = m - n
=> 2/a = m - n
=> m - n = 2/a ---------(4)
Now ,
Multiplying eq-(3) and (4) , we get ;
=> (m + n) × (m - n) = 2a × 2/a
=> m² - n² = 2 × 2
=> m² - n² = 4