Math, asked by hithabandari, 1 month ago

2. If A(3, 8), B(4, -2) and C(5, -1) are the vertices of AABC. Then, its area is (a) 28 – sq. units (b) 37 - sq. units , (c) 57 sq. units 1 2 (d) 75 sq. units 3 TL​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

Vertices of triangle are \tt{\blue{A(3,8)},\,\,  \blue{B(4,-2)} \&\,\,\blue{C(5,-1)} }

Now,

 \sf{its \:  \: area \:  \:}, \triangle =   \dfrac{1}{2} \cdot \left|  \left|  \begin{array}{ccc} 3 & 8 &1 \\ 4 &  - 2 &1   \\  5 &  - 1 &1 \end{array} \right|  \right|

=   \dfrac{1}{2} \cdot \left| 3 \left|  \begin{array}{cc}   - 2 &1   \\    - 1 &1 \end{array} \right|   - 8 \left|  \begin{array}{cc}   4 &1   \\    5 &1 \end{array} \right| + 1 \left|  \begin{array}{cc}   4 & - 2  \\    5 & - 1 \end{array} \right| \right|

=   \dfrac{1}{2} \cdot \left| 3 ( - 2 + 1)  - 8 (4 - 5) + 1 ( - 4 + 10)\right|  \\

=   \dfrac{1}{2} \cdot \left| 3 ( -  1)  - 8 ( - 1) + 1 (  6)\right|  \\

=   \dfrac{1}{2} \cdot \left|  - 3    + 8  +   6\right|  \\

=   \dfrac{1}{2} \cdot \left|  5  +   6\right|  \\

=   \dfrac{11}{2}   \\

Similar questions