Math, asked by pranav6319, 1 year ago


2. If a and B are the zeroes of the polynomial 2x^2 +7x + 3,then form a polynomial whose
zeroes are 1/a and 1/b

Answers

Answered by BrainlyConqueror0901
83

Answer:

\huge{\boxed{\boxed{\sf{3x^{2}+7x+2}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

2 {x}^{2}  + 7x + 3 = 0 \\ 2 {x}^{2} + 6x + x + 3 = 0 \\ 2x(x + 3) + 1(x + 3) = 0 \\( 2x + 1) (x + 3) = 0 \\   = )2x + 1 = 0 \\  = )2x =  - 1 \\  = )x =  \frac{ - 1}{2}  -  -  -  -  - 1st \: zeroes \\ = ) x + 3 = 0 \\  = )x =  - 3 -  -  -  -  - 2nd \: zeroes \\  \\  = )a =  \frac{ - 1}{2}  \\ = ) b =  - 3 \\  \\  >  > new \: zeroes \: of \: new \: quadratic \\   = )\frac{1}{a}  =  \frac{1}{ \frac{ - 1}{2} }  = -  2  -  -  -  -  - 1st \: zeroes\\  = ) \frac{1}{b}  =  \frac{1}{ - 3}  =  \frac{ - 1}{3}   -  -  -  -  - 2nd \: zeroes \\  \\ (x -  \frac{1}{a} )(x -  \frac{1}{b} ) = 0\\  = )(x - ( - 2))(x - ( \frac{ - 1}{3} ))  = 0\\  = )(x  + 2)(x +  \frac{1}{3} ) = 0 \\  = )(x + 2)( \frac{3x + 1}{3} ) = 0 \\  = )(x + 2)(3x + 1) = 0 \\  = )3 {x}^{2}  + 6x + x + 2   = 0 \\  = ) 3{x}^{2}  + 7x + 2 = 0

\huge{\boxed{\boxed{\sf{3x^{2}+7x+2}}}}

_________________________________________

Similar questions