Math, asked by lalchandjhorar1088, 6 months ago

2 If A.M: G.M = 13:12 for the two
positive numbers, then the ratio of
the numbers is *
04:1
0 4:9
O 3:4
02:3​

Answers

Answered by BrainlyPopularman
76

GIVEN :

 \\ \implies \rm A.M.:G.M. = 13:12 \\

TO FIND :

• Ratio of the numbers = ?

SOLUTION :

• Let two numbers are a & b.

• We know that –

 \\ \implies \rm A.M.= \dfrac{a + b}{2} \\

• And –

 \\ \implies \rm G.M.= \sqrt{ab} \\

• So that –

 \\ \implies \rm  \dfrac{ \dfrac{a + b}{2}}{ \sqrt{ab} } =  \dfrac{13}{12} \\

 \\ \implies \rm  \dfrac{a + b}{ \cancel2\sqrt{ab} } =  \dfrac{13}{ \cancel{12}} \\

 \\ \implies \rm  \dfrac{a + b}{\sqrt{ab} } =  \dfrac{13}{6} \\

 \\ \implies \rm  \dfrac{a}{\sqrt{ab}} +  \dfrac{b}{ \sqrt{ab} } =  \dfrac{13}{6} \\

 \\ \implies \rm  \sqrt \dfrac{a}{b} +\sqrt \dfrac{b}{a}=  \dfrac{13}{6} \\

 \\ \implies \rm  \sqrt \dfrac{a}{b} +\dfrac{1}{ \sqrt\dfrac{a}{b}}=  \dfrac{13}{6} \\

• Let's put   \:  \:  \rm  \sqrt \dfrac{a}{b}  = x \:  \: \\

 \\ \implies \rm x +\dfrac{1}{x}=  \dfrac{13}{6} \\

 \\ \implies \rm\dfrac{ {x}^{2} +  1}{x}=  \dfrac{13}{6} \\

 \\ \implies \rm6({x}^{2} +  1) = 13x \\

 \\ \implies \rm6{x}^{2} +6= 13x \\

 \\ \implies \rm6{x}^{2} - 13x+6=0 \\

 \\ \implies \rm6{x}^{2} -9x - 4x+6=0 \\

 \\ \implies \rm3x(2x - 3) -2(2x - 3)=0 \\

 \\ \implies \rm(3x - 2)(2x - 3)=0 \\

 \\ \large\implies{ \boxed{ \rm x = \dfrac{2}{3}, \dfrac{3}{2}}}\\

• So that –

 \\ \implies\rm \sqrt \dfrac{a}{b}= \dfrac{2}{3} \:  \: and \:  \:  \sqrt\dfrac{a}{b} = \dfrac{3}{2}\\

• Square on both sides –

 \\ \implies \large { \boxed{\rm \dfrac{a}{b}= \dfrac{4}{9} \:  \: and \:  \:\dfrac{a}{b} = \dfrac{9}{4}}}\\

▪︎ Hence , Second option is correct.


pulakmath007: superb
Answered by pulakmath007
75

SOLUTION

GIVEN

A.M: G.M = 13:12 for the two positive numbers,

TO CHOOSE THE CORRECT OPTION

The ratio of the numbers is

(a) 4:1

(b) 4:9

(c) 3:4

(d) 2:3

EVALUATION

Let the two numbers are a and b

Then Arithmetic mean (AM)

 =  \displaystyle \sf{  \frac{a + b}{2} \: }

Then Geometric mean (GM)

 \sf{ =   + \sqrt{ab} }

( + sign is taken as the two numbers are positive)

Now by the given condition

AM : GM = 13 : 12

 \implies  \displaystyle \sf{  \frac{a + b}{2} : \sqrt{ab}  = 13 :  12}

 \implies  \displaystyle \sf{  \frac{a + b}{2\sqrt{ab} }  =  \frac{13}{12} }

 \implies  \displaystyle \sf{  \frac{{(a + b)}^{2} }{4{ab} }  =  \frac{169}{144} } \: (squaring \: both \: sides)

 \implies  \displaystyle \sf{ \frac{4ab}{ {(a + b)}^{2} }  =  \frac{144}{169}   }

 \implies  \displaystyle \sf{ 1 - \frac{4ab}{ {(a + b)}^{2} }  = 1 -  \frac{144}{169}   }

 \implies  \displaystyle \sf{  \frac{{(a + b)}^{2}  - 4ab}{ {(a + b)}^{2} }  =  \frac{169 - 144}{169}   }

 \implies  \displaystyle \sf{  \frac{{(a  -  b)}^{2}  }{ {(a + b)}^{2} }  =  \frac{25}{169}   }

 \implies  \displaystyle \sf{  \frac{{(a  -  b)} }{ {(a + b)} }  =  \frac{5}{13}   } ( Taking positive sign on Square root of both sides)

 \implies  \displaystyle \sf{  \frac{{(a   +   b)} }{ {(a  -  b)} }  =  \frac{13}{5}   }

Now use Componendo Dividendo Rule

 \implies  \displaystyle \sf{  \frac{{(a   +   b )+ (a - b)} }{ {(a + b )- (a  -  b)} }  =  \frac{13 + 5}{13 - 5}   }

 \implies  \displaystyle \sf{  \frac{{2a} }{ {2b} }  =  \frac{18}{8}   }

 \implies  \displaystyle \sf{  \frac{{a} }{ {b} }  =  \frac{9}{4}   }

 \implies  \displaystyle \sf{  \frac{{b} }{ {a} }  =  \frac{4}{9}   }

Hence the ratio of the numbers is 4 : 9

FINAL ANSWER

If A.M: G.M = 13:12 for the two positive numbers, then the ratio of the numbers is

(b) 4 : 9

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The G.M. of 3 and 24 with weight 2 and 1 respectively is (A) 8 (B) 4 (C) 6 (D) 9

https://brainly.in/question/21215239


BrainlyPopularman: Nice :)
pulakmath007: Thank you
Similar questions