Accountancy, asked by hemantsapkal626, 9 months ago

2. If Cos 0 =
15
17
then find sin 0​

Answers

Answered by ItzArchimedes
66

Correct Question:

If cos θ = 15/17 , then find sin θ

Solution:

Using,

sin² θ + cos² θ = 1

Simplifying

sin θ = √1 - cos² θ

Now , substituting the value of cosθ

→  sin θ = √1 - (15/17)²

→  sin θ = √1 - 225/289

→  sin θ = √[(289 - 225)/289]

→ sin θ = √[64/289]

→  sin θ = √64/√289

→  sin θ = 8/17

Hence , sin θ = 8/17

★ Knowledge enhancer  :-

Trigonometric identities

→  1st identity  : sin² A + cos²A = 1

→  2nd identity : sec²A - tan²A = 1

→  3rd identity : cosec²A - cot²A = 1

Answered by SteelTitan
530

{ \bold { \underline{\large{Correct \: Question : - }}}} \:

If Cos θ = \sf\dfrac{15}{17} then find sin θ

{ \bold { \underline{\large{ Required\: Answer : - }}}} \:

{ \bold { \underline{\large{Given : - }}}} \:

Cos θ = \sf\dfrac{15}{17}

{ \bold { \underline{\large{ To \: Find : - }}}} \:

sin θ = ?

{ \bold { \underline{\large{Solution : - }}}} \:

As we know that

sin² θ + cos² θ = 1

Now ,simplifying

sin θ = √1 - cos² θ = 1

Now,substituting the value of cos

sin θ =  \sqrt{1 }  -  \sf\dfrac{ {15}^{2} }{17}

sin θ = √1 - \sf\dfrac{225}{289}

sin θ =  \sf\dfrac{ \sqrt{1 - 225} }{289}

sin θ = \sqrt{ \sf\dfrac{64}{289} }

sin θ. =  \sf\dfrac{ \sqrt{64} }{ \sqrt{289}}

sin θ = \sf\dfrac{8}{17}

Hence,

sin θ = \sf\dfrac{8}{17}

Similar questions