Math, asked by akshgupta50, 1 year ago


2. If cos 0 + sin 0 = 12 cos e, prove that cos 0 - sin 0 =
√2 sine.
0​

Answers

Answered by sanketj
11

we know that,

sin²x + cos²x = 1

sin²x = 1 - cos²x

cosx + sinx =  \sqrt{2} cosx \\  \\ squaring \: both \: sides \\  \\  {cos}^{2} x +  {sin}^{2} x + 2sinxcos = 2 {cos}^{2} x \\  1 + 2sinxcos = 2 {cos}^{2} x \\ 2sinxcosx = 2 {cos}^{2} x - 1   \:  \:  \:  \:  \:  \:  \:  \: ...(i) \\  \\  {(cosx - sinx)}^{2}   \\ =  {cos}^{2} x +  {sin}^{2}x - 2sinxcosx \\ =   1 - (2 {cos}^{2} x - 1) \:  \:  \:  \:  \: ...(from \: i) \\  = 1 - 2 {cos}^{2}x + 1 = 2 - 2 {cos}^{2}  x \\  = 2(1 -  {cos}^{2} x) \\  = 2 {sin}^{2} x \\  \\  {(cosx - sinx)}^{2}  = 2 {sin}^{2} x \\  \\ taking \: square \: roots \: on \: both \: sides \\  \\ cosx - sinx =  \sqrt{2} sinx

Hence proved!

Similar questions