(2) If cosec =
25., then find the value of coto.
(21
20_
Answers
CORRECT QUESTION:
Q: If cosec θ = 25/7 , then what is the value of cot θ?
ANSWER:
- The value of cot θ = 24/7
STEP-BY-STEP EXPLANATION:
GIVEN
- cosec θ = 25/7
TO FIND
- The value of cot θ.
IDENTITIES USED:
- cosec²θ - 1 = cot²θ
FINDING THE VALUE OF COT θ:
⇒ cosec θ = 25/7
- Squaring both sides,
⇒ cosec²θ = 625/49
- Subtract 1 from both sides,
⇒ cosec²θ - 1 = 625/49 - 1
⇒ cot²θ = 625/49 - 49/49
⇒ cot²θ = (625 - 49)/49
⇒ cot²θ = 576/49
⇒ cot²θ = (24/7)²
- Power of both sides cancelled,
⇒ cot θ = 24/7
IDENTITIES TO REMEMBER:
- sin²θ + cos²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
If cosec Θ = units, then find the value of cot Θ.
cot Θ = units
- Cosec Θ = units
- Cot Θ = ?
⇒(AC)² = (AB)² + (BC)²
or,
(H)² = (P)² + (B)²
⇒units
⇒units
where,
h = hypotenuse of the triangle.
b = base of the triangle.
p = perpendicular of the triangle.
Let's find the sides of the triangle
Cosec Θ = units
By comparing, we get :-
hypotenuse = 25 units
perpendicular = 7 units
Now by Pythagoras theorem we can find out the value of base.
(H)² = (P)² + (B)²
substituting the values,
➙(25)² = (7)² + (B)²
➙625 = 49 + (B)²
➙(B)² = 625 - 49
➙B² = 576
➙B = √576
➙B = 24 units
As we know,
units
now putting the values,
units
HENCE, THE VALUE OF units