Math, asked by rahila27, 4 months ago

(2) If cosec =
25., then find the value of coto.
(21
20_​

Answers

Answered by TheBrainliestUser
5

CORRECT QUESTION:

Q: If cosec θ = 25/7 , then what is the value of cot θ?

ANSWER:

  • The value of cot θ = 24/7

STEP-BY-STEP EXPLANATION:

GIVEN

  • cosec θ = 25/7

TO FIND

  • The value of cot θ.

IDENTITIES USED:

  • cosec²θ - 1 = cot²θ

FINDING THE VALUE OF COT θ:

⇒ cosec θ = 25/7

  • Squaring both sides,

⇒ cosec²θ = 625/49

  • Subtract 1 from both sides,

⇒ cosec²θ - 1 = 625/49 - 1

⇒ cot²θ = 625/49 - 49/49

⇒ cot²θ = (625 - 49)/49

⇒ cot²θ = 576/49

⇒ cot²θ = (24/7)²

  • Power of both sides cancelled,

⇒ cot θ = 24/7

IDENTITIES TO REMEMBER:

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1
Answered by llMrIncrediblell
323

\huge\red{\mid{\underline{\overline{\texttt{Correct \:Question}}}\mid}}

If cosec Θ =  \frac{25}{7} units, then find the value of cot Θ.

\huge\pink{\mid{\fbox{\tt{Answer}}\mid}}

cot Θ =  \frac{24}{7} units

\huge\purple{\mid{\fbox{\tt{Solution}}\mid}}

\tt\orange{Given:}

  • Cosec Θ =  \frac{25}{7} units

\tt\green{To\:Find:}

  • Cot Θ = ?

\tt\purple{Formula\:Used:}

⇒(AC)² = (AB)² + (BC)²

or,

(H)² = (P)² + (B)²

 \rm\: Cosec \: Θ =  \frac{h}{p} units

 \rm \: Cot Θ  =  \frac{b}{p} units

where,

h = hypotenuse of the triangle.

b = base of the triangle.

p = perpendicular of the triangle.

\tt\blue{Calculations:}

Let's find the sides of the triangle

Cosec Θ =  \frac{h}{p}  =  \frac{25}{7} units

By comparing, we get :-

hypotenuse = 25 units

perpendicular = 7 units

Now by Pythagoras theorem we can find out the value of base.

(H)² = (P)² + (B)²

substituting the values,

➙(25)² = (7)² + (B)²

➙625 = 49 + (B)²

➙(B)² = 625 - 49

➙B² = 576

➙B = √576

➙B = 24 units

As we know,

 \rm \: <strong>Cot Θ</strong>  =  \frac{b}{p} units

now putting the values,

 \rm \: <strong>Cot Θ</strong>  =  \frac{24}{7} units

HENCE, THE VALUE OF \rm \: Cot Θ   \: is \:  \frac{24}{7} units

Attachments:
Similar questions