Math, asked by aitisaamfarman86, 6 months ago

2) If length of rectangle is 24 cm and its breadth is 10 cm. find the diagonal.​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
11

Answer:-

\blue{\bigstar} Length of the Diagonal \large\leadsto\boxed{\tt\pink{26 \: cm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • Length of rectangle = 24 cm

  • Breadth of rectangle = 10 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • The length of the diagonal

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Figure:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(2,3.5){\sf\large 24 cm}\put(-1.4,1.4){\sf\large 10 cm}\qbezier(5,3)(5,3)(0,0)\put(2.5,1.8){\bf d}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

SOLUTION:-

We know,

\pink{\bigstar} \underline{\boxed{\bf\green{Diagonal = \sqrt{(length)^2 + (breadth)^2}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Substituting in the Formula:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf Diagonal = \sqrt{(24)^2 + (10)^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf Diagonal = \sqrt{576 + 100}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf Diagonal = \sqrt{676}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\red{26 \: cm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the length of the diagonal is 26 cm.

Similar questions