Math, asked by guptalaksh4567, 6 months ago

2 If ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C, then value of a is​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \int \sec^{2} (7 - 4x) dx = a \tan( 7 - 4x)  + c \\

let \: ( 7 - 4x) = t \\  \implies - 4dx = dt

  -  \frac{1}{4} \int \sec^{2} (t) dt = a \tan(7 - 4x)  + c

 \implies  - \frac{1}{4}  \tan(7 - 4x)  + c = a \tan(7 - 4x)  + c

 \implies \: a =  -  \frac{1}{4}

Similar questions