Math, asked by varunkhera3, 1 month ago

2 If sinA = 1/3, then find the value of cotA? + 1.​

Answers

Answered by BrainlyRish
2

Given : \sf{\sin A = \dfrac{3}{5}}\\

Need To Find : The value of cot A .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Basic Formulas of Trigonometry is given by :

\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\

  • \sf{\sin A = \dfrac{1}{3}= \dfrac{Perpendicular} { Hypotenuse} }\\

Therefore,

  • Perpendicular of Right Angled Triangle is 1 cm .

  • Hypotenuse of Right angled triangle is 3 cm .

⠀⠀⠀⠀⠀Finding Base of Right angled triangle :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\ \bf{ By \:Pythagoras\:Theorem\::}\\

\underline {\boxed {\sf{\star (Perpendicular)^{2} + Base^{2}  = ( Hypotenuse)^{2} }}}\\

❍ Let's Consider the Base of Triangle be x cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1^{2} + x^{2} = 3^{2}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1 + x^{2} = 9}\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 9-1}\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 8}\\

⠀⠀⠀⠀⠀:\implies \tt{  x = \sqrt{8}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 2\sqrt {2}\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Base  \:of\:Right \:Angled \:triangle \:is\:2\sqrt {2}\: cm}}}\\

❒ Finding value of cot A by using found values :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

  • \sf{\cot A =  \dfrac{Base} { Perpendicular} }\\

Where ,

  • Base of Right Angled Triangle is 2\sqrt {2}.

  • Perpendicular of Right angled triangle is 1 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\cot A = \dfrac{2\sqrt{2}}{1}\:or\:2\sqrt{2}= \dfrac{Base} { Perpendicular} }\\

\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\cot A  = \dfrac{2\sqrt{2}}{1}\:or\:2\sqrt {2}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions