Math, asked by deshmukhjidhnyasa, 3 months ago

2) If the circumference of a circle
is
176 cm , find its radius​

Answers

Answered by karmaan958
5

Step-by-step explanation:

Circumference of a circle = 2πr

176cm = 2πr

2πr = 176cm

2 × 22/7 × r = 176cm

44/7 × r = 176cm

r = (176×7)/44 cm

r = (4×7) cm

r = 28cm

Answered by mathdude500
6

\large\underline{\bold{Given\:Question - }}

  • If the circumference of a circle is 176 cm , find its radius

Answer

\large\underline{\sf{Given- }}

\rm :\longmapsto\:Circumference_{(circle)} = 176 \: cm

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:radius_{(circle)}

\begin{gathered}\Large{\sf{{\underline{Formula\: Used-}}}}  \end{gathered}

\rm :\longmapsto\:Circumference_{(circle)} \:  =  \: 2 \: \pi \: r

where,

  • r is radius of circle.

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:Circumference_{(circle)} = 176 \: cm

\rm :\longmapsto\:2 \: \pi \: r \:  = 176

\rm :\longmapsto\:2 \times \dfrac{22}{7}  \times r = 176

\rm :\implies\:r \:  =  \: 28 \: cm

\bf\implies \:radius_{(circle)} \:  =  \: 28 \: cm

Additional Information :-

 \boxed{ \bf{ \: Area_{(circle)} = \pi \:  {r}^{2} }}

 \boxed{ \bf{ \: Area_{(rectangle)} = length \times breadth}}

 \boxed{ \bf{ \: Area_{(square)} =  {(side)}^{2}}}

 \boxed{ \bf{ \: Area_{(rhombus)} = base \times height}}

 \boxed{ \bf{ \: Area_{(right \triangle)} = \dfrac{1}{2}  \times base \times heigt}}

Similar questions