Math, asked by jafarahemed9, 6 months ago

(2) If the distance between the points (2, -3)
and (5. b) is 5, then b = ??
(step by step explaination needed)
NO SPAM ANSWERS
SPAM ANSWERS = REPORT​

Answers

Answered by Tomboyish44
31

Answer:

b = 1, -7

Step-by-step explanation:

Here, AB = 5cm.

    \setlength{\unitlength}{1cm}\begin{picture}(5, 5)\put(4.1, -2.3){\sf 5cm}\put(2, -2.5){\line(5,0){5}}\put(1.9, -2.6){$<$}\put(2, -3){\line(5, 0){5}}\put(1.9, -3.06){\textbullet}\put(1.3, -3.5){\sf A(2, -3)}\put(6.9, -3.06){\textbullet}\put(6.8, -2.6){$>$}\put(6.4, -3.5){\sf B(5, b)}\end{picture}

We can use the Distance formula to find the unknown coordinate.

\boxed{\sf Distance \ between \ any \ two \ points = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}

\Longrightarrow \sf Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\Longrightarrow \sf 5 = \sqrt{(2 - 5)^2 + (-3 - b)^2}

\Longrightarrow \sf 5 = \sqrt{(-3)^2 + (-3 - b)^2}

\Longrightarrow \sf 5 = \sqrt{9 + (-3 - b)^2}

Square on both sides.

\Longrightarrow \sf \Big(5\Big)^2 = \Big(\sqrt{9 + (-3 - b)^2} \Big)^2

\Longrightarrow \sf 25 = 9 + (-3 - b)^2

Using (a - b)² = a² + b² - 2ab we get:

\Longrightarrow \sf 25 = 9 + (-3)^2 + (b)^2 -2(-3)(b)^2

\Longrightarrow \sf 25 - 9 = 9 + b^2 + 6b

\Longrightarrow \sf 16 - 9 = b^2 + 6b

\Longrightarrow \sf b^2 + 6b - 7 = 0

Splitting the middle term we get:

\Longrightarrow \sf b^2 + 7b - b - 7 = 0

\Longrightarrow \sf b(b + 7) -1(b + 7) = 0

\Longrightarrow \sf (b - 1)(b + 7) = 0

Equating the factors with zero we get:

\Longrightarrow \sf b - 1 = 0

\Longrightarrow \boxed{ \sf b = 1}

\Longrightarrow \sf b + 7 = 0

\Longrightarrow \boxed{\sf b = - 7}

Now let's check if both the values of b are valid ones.

Case I

If b = 1

\Longrightarrow \sf Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\Longrightarrow \sf 5 = \sqrt{(2 - 5)^2 + (-3 - 1)^2}

\Longrightarrow \sf 5 = \sqrt{(-3)^2 + (-4)^2}

\Longrightarrow \sf 5 = \sqrt{9 + 16}

\Longrightarrow \sf 5 = \sqrt{25}

\Longrightarrow \sf 5 = 5

LHS = RHS

Hence b = 1.

Case II

If b = -7

\Longrightarrow \sf Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\Longrightarrow \sf 5 = \sqrt{(2 - 5)^2 + (-3 - (-7))^2}

\Longrightarrow \sf 5 = \sqrt{(-3)^2 + (-3 + 7)^2}

\Longrightarrow \sf 5 = \sqrt{(-3)^2 + (4)^2}

\Longrightarrow \sf 5 = \sqrt{9 + 16}

\Longrightarrow \sf 5 = \sqrt{25}

\Longrightarrow \sf 5 = 5

LHS = RHS

Hence b = -7.

Therefore both the values, 1 and -7 are possible.

Answered by Anonymous
8

Given:-

❐Given Points = (2,-3) and (5,b)

❐Distance between given points = 5

Find:-

❐Value of b

Solution:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.3mm}\qbezier(0,1)(1,1)(5.2,1)\put( - 0.2,0.7){\bf{A}} \put(5.2,0.7){\bf{B}} \put(5,0.4){\bf{(2,-3)}}\put( - 0.4,0.4){\bf{(5,b)}}\put(2.9, 1.3){\vector(1,0){2}} \put(2,1.3){\vector(-1,0){1.9}} \put(2.3,1.2){\bf{5}}\end{picture}

we, know that

  \large{\underline{ \boxed{\sf Distance ,AB =   \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \: }}}

where,

  • AB = 5units
  • \sf x_1 = 2
  • \sf x_2 = 5
  • \sf y_1 = -3
  • \sf y_2 = b

So,

 \dashrightarrow\sf AB =   \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\  \\

 \dashrightarrow\sf 5 =   \sqrt{( 5 - 2)^2 + (-3 - b)^2} \\  \\

 \dashrightarrow\sf 5 =   \sqrt{(3)^2 + (-3 - b)^2} \\  \\

 \dashrightarrow\sf 5 =   \sqrt{9+ (-3- b)^2} \\  \\

 \sf \quad  \bigstar using \:  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}  \bigstar

 \dashrightarrow\sf 5 =   \sqrt{9 +  {-3}^{2} - 2(-3)(b) +  {b}^{2} } \\  \\

 \dashrightarrow\sf 5 =   \sqrt{9 + 9 + 6b+  {b}^{2} } \\  \\

 \dashrightarrow\sf 5 =   \sqrt{18 +6b+  {b}^{2} } \\  \\

 \sf \qquad  \bigstar both \: side \: squaring  \bigstar

\dashrightarrow\sf 5^{2}  =    \bigg \{\sqrt{18 +6b+  {b}^{2} } \bigg \}^{2} \\  \\

\dashrightarrow\sf 25  = 18 +6b+  {b}^{2}\\  \\

\dashrightarrow\sf 18  - 25+6b+  {b}^{2} = 0\\  \\

\dashrightarrow\sf -7+6b+  {b}^{2} = 0\\  \\

\dashrightarrow\sf {b}^{2} + 6b - 7 = 0\\  \\

\sf \quad  \bigstar using \: middle - split \: term \bigstar

\dashrightarrow\sf {b}^{2} + 7b - b - 7 = 0\\  \\

\dashrightarrow\sf b(b+ 7) - 1(b  + 7 )= 0\\  \\

\dashrightarrow\sf (b+ 7)(b - 1)= 0\\  \\

 \begin{gathered}\sf b+ 7 = 0 \\  \sf b =  - 7 \end{gathered}  \qquad\begin{gathered} \sf b - 1= 0   \\  \sf b = 1 \end{gathered}

Hence, b = -7 or 1

Similar questions