Math, asked by pulakalasanjana, 10 months ago

2.
If the distance between the points (3,a) and (6,1) is 5. find the value of A.​

Answers

Answered by Itzraisingstar
1

Answer:

Step-by-step explanation:

a=5 or -3,

√-3²+(a-1)²,

=5,

Squaring on both sides:

9+(a-1)^2=25,

(a-1)^2=16,

a-1=+4 or -4,

Hence a is 5 or -3.

Hope it helps.

Answered by umiko28
6

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \bf\pink{distannce \: formula \: d \mapsto \sqrt{ ({x2 - x1})^{2}  + ( {y2 - y1})^{2} }  } \\  \\  \bf\pink{let \: the \: points \: are \: p(3,a) ,Q(6,1)\: } \\  \\  \bf\pink{here \: pQ =5} \\  \\  \bf\pink{pQ= \sqrt{ ({x2 - x1})^{2} + ( {y2 - y1}^{2} ) }  } \\  \\  \bf\pink{ \mapsto> 5 =\sqrt{{( 6  -  3})^{2}  +( { 1  - a})^{2} } } \\  \\  \bf\pink{\mapsto > 5  = \sqrt{ 9 + 1  +   {a}^{2}  - 2a}} \\  \\  \bf\pink{   \mapsto> 25= { a}^{2}  -  2a  + 10} \\  \\ \bf\pink{ \mapsto >  {a}^{2} -  2a - 35 =0 } \\  \\ \bf\pink{ \mapsto  >  {a}^{2}  - (7a - 5a) - 35=0} \\  \\ \bf\pink{  \mapsto>  {a}^{2} - 7a + 5a - 35 = 0 } \\  \\ \bf\pink{   \mapsto> a (a - 7) + 5(a - 7)  =0} \\  \\ \bf\pink{ \mapsto > (a - 7)(a + 5) = 0} \\  \\ \bf\pink{a - 7 =0} \\ \bf\pink{ \mapsto  > a =7} \\  \\ \bf\pink{a + 5 = 0} \\ \bf\pink{a  = - 5} \\  \\ \bf\green{ points \: are \: (3,7)(6,1) \: or( 3, - 5)(6,1)} \\  \\ \large\boxed{ \fcolorbox{violet}{lime}{hope \:it \: help \: you} }

Similar questions