Math, asked by harshalitaksande, 5 days ago

2) If the volume of a parallelopiped whose coterminous edges are -31 + 2 +nk, 2i+j-k -i+3j+2k is 7 cu-units, then the value of n is
(a) o
(b) 1
(c) 3
(d) 4




piz .. help mi​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given three coterminous edges of parallelopiped.

Let assume that three edges be represented as

\rm \: \vec{a} =  - 3\hat{i} + 2\hat{j} + n\hat{k} \\

\rm \: \vec{b} = 2\hat{i} + \hat{j} - \hat{k} \\

\rm \: \vec{c} =  - \hat{i} + 3\hat{j} + 2\hat{k} \\

Also, given that

\rm \: Volume_{(parallelopiped)} = 7 \: cubic \: units \\

We know, volume of parallelopiped is given by

\rm \: Volume_{(parallelopiped)} = [\vec{a} \:  \: \vec{b} \:  \: \vec{c}] \\

\rm \:\bigg | \begin{gathered}\sf \left | \begin{array}{ccc} - 3&2&n\\2&1& - 1\\ - 1&3&2\end{array}\right | \end{gathered}\bigg | = 7 \\

\rm \:  | - 3(2 + 3) - 2(4 - 1) + n(6 + 1)|  = 7 \\

\rm \:  | - 3(5) - 2(3) + n(7)|  = 7 \\

\rm \:  |  - 15 - 6 + 7n|  = 7 \\

\rm \:  |  - 21 + 7n|  = 7 \\

\rm \: 7n - 21 =  \:  \pm \: 7 \\

\rm \: 7n - 21 =  7 \:  \: or \:  \: 7n - 21 =  - 7 \\

\rm \: 7n  =  28 \:  \: or \:  \: 7n = 14 \\

\rm\implies \:n = 4 \:  \: or \:  \: n = 2 \\

So, option (d) is correct.

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:[\vec{a} \:  \: \vec{b} \:  \: \vec{c}] \:  =  \: \vec{a}.(\vec{b} \times \vec{c}) \: }} \\

\boxed{ \rm{ \:[\vec{a} \: \vec{b} \: \vec{c}] \:  =  \: [\vec{b} \: \vec{c} \: \vec{a}] \:  =  \: [\vec{c} \: \vec{a} \: \vec{b}] \: }} \\

\boxed{ \rm{ \:[\vec{a} \:  \: \vec{a} \:  \: \vec{b}] \:  =  \: 0 \: }} \\

\boxed{ \rm{ \:[\hat{i} \:  \: \hat{j} \:  \: \hat{k}] \:  =  \: [\hat{j} \:  \: \hat{k} \:  \: \hat{i}] \:  =  \: [\hat{k} \:  \: \hat{i} \:  \: \hat{j}] \:  =  \: 1 \: }} \\

\boxed{ \rm{ \:[m \: \vec{a} \:  \: \vec{b} \:  \: \vec{c}] \:  =  \: m \: [\vec{a} \:  \: \vec{b} \:  \: \vec{c}] \: }} \\

\boxed{ \rm{ \:[\vec{a} \:  \: \vec{b} \:  \: \vec{c}] \:  =  \: 0 \: \rm\implies \:\vec{a}, \: \vec{b}, \: \vec{c} \: are \: coplanar \: }} \\

Similar questions