Math, asked by sarithabandari82, 2 months ago



2) If theta B an acute angle, 7 sin²theta +
3 cos²theta =4,then tan theta ​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:0 < \theta  < 90 \degree \:

and

\rm :\longmapsto\:7 {sin}^{2} \theta  + 3 {cos}^{2}\theta  = 4

We know,

\boxed{ \bf{ \:  {sin}^{2} \theta  +  {cos}^{2} \theta  = 1}}

So, using this

\rm :\longmapsto\:7 {sin}^{2} \theta  + 3(1 -  {sin}^{2} \theta ) = 4

\rm :\longmapsto\:7 {sin}^{2} \theta  + 3 -  3{sin}^{2} \theta = 4

\rm :\longmapsto\:4{sin}^{2} \theta  = 4 - 3

\rm :\longmapsto\:4{sin}^{2} \theta  = 1

\rm :\longmapsto\:{sin}^{2} \theta  = \dfrac{1}{4}

\rm :\longmapsto\:sin\theta  =  \:  \pm \: \dfrac{1}{2}

As it is given that

\rm :\longmapsto\:0 < \theta  < 90 \degree \:

So,

\rm :\longmapsto\:sin\theta  > 0

Thus,

\rm :\longmapsto\:{sin}\theta  = \dfrac{1}{2}

\rm :\longmapsto\:{sin}\theta  = sin30 \degree

\rm :\longmapsto\:\theta  = 30 \degree

Therefore,

\rm :\longmapsto\:tan\theta  = tan30 \degree

\bf\implies \:tan \: \theta  = \dfrac{1}{ \sqrt{3} }

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions