Math, asked by adistateron1972, 2 months ago

2. If X + (1/X) = 2, then (X) cube + (1/X cube) = ?

a) 2
b) 8
c) 14
d) 64​

Answers

Answered by deenabandhannsboamdu
1

Step-by-step explanation:

x +  \frac{1}{x}  = 2 \\ therefore \\  {(x \ +  \frac{1}{x} )}^{2}  =  {x}^{2} +  { \frac{1}{ {x}^{2} } } + 2 \\  {2}^{2}  = {x}^{2} +  { \frac{1}{ {x}^{2} } } + 2 \\ {x}^{2} +  { \frac{1}{ {x}^{2} } } = 4 - 2 \\ {x}^{2} +  { \frac{1}{ {x}^{2} } } = 2 \\ WE KNOW THAT

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}   -  ab +  {b}^{2} )

SO,

{x}^{3} +  { \frac{1}{ {x}^{3} } } =  \: (x +  \frac{1}{x} )({x}^{2} +  { \frac{1}{ {x}^{2} } }  -  x( \frac{1}{x} ))

THEREFORE APPLYING ALL THE VALUES WE WOULD GET

{x}^{3} +  { \frac{1}{ {x}^{3} } } = (2)(2  -  1) \\ {x}^{3} +  { \frac{1}{ {x}^{3} } } = 2(1) \\ {x}^{3} +  { \frac{1}{ {x}^{3} } } = 2

Similar questions