Math, asked by sdas86339, 10 months ago

2) If (x+1/x) = 3, find the value of i) (x^2+1/x^2) ii) (x^4+1/x^4)​

Answers

Answered by ambsah86
0

Answer:

i) answer is 7

ii) answer is 47

Answered by Isighting12
0

Answer:

x^{2} + \frac{1}{x^{2} }= 7\\

x^{4} + \frac{1}{x^{4}}= 47\\

Step-by-step explanation:

x + \frac{1}{x}  = 3

i) x^{2} + \frac{1}{x^{2} }

(x + \frac{1}{x}  )^{2} = (3)^{2}                                              (a + b)^{2} = a^{2} + b^{2} + 2ab

x^{2} + \frac{1}{x^{2}} + 2(x)(\frac{1}{x}) = 9\\

x^{2} + \frac{1}{x^{2} }+ 2= 9\\

x^{2} + \frac{1}{x^{2} } = 9 - 2\\

x^{2} + \frac{1}{x^{2} }= 7\\

ii)x^{4} + \frac{1}{x^{4} }

(x^{2}  + \frac{1}{x^{2} }  )^{2} = (7)^{2}                                                (a + b)^{2} = a^{2} + b^{2} + 2ab

x^{4} + \frac{1}{x^{4}} + 2(x^{2} )(\frac{1}{x^{2} }) = 49\\

x^{4} + \frac{1}{x^{4}} + 2= 49\\

x^{4} + \frac{1}{x^{4}}= 49 - 2\\

x^{4} + \frac{1}{x^{4}}= 47\\

Similar questions