Math, asked by ibrahimzeya27, 3 days ago

2.
if x= 5-2
if \: x = 5 - 2 \sqrt{6 \: find \: the \:value \: of \:  \sqrt{x + 1 \div  \sqrt{x} } }

Answers

Answered by IamIronMan0
12

Answer:

 \huge \pink{ \sqrt{10} }

Step-by-step explanation:

Given

x = 5 - 2 \sqrt{6}   \\ = 2 + 3  -  2 \sqrt{2}  \sqrt{3}  \\  =  \sqrt{2}  {}^{2}  +  \sqrt{3}  {}^{2}  - 2 \sqrt{2}  \sqrt{3}  \\  = ( \sqrt{3}   - \sqrt{2} ) { }^{2}  \\  \\ and \\  \\  \frac{1}{x}  =  \frac{1}{( \sqrt{3} -  \sqrt{2}) {}^{2}   }  \times  \frac{( \sqrt{3} +  \sqrt{2} ) {}^{2}  }{( \sqrt{3}  +  \sqrt{2}) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{( \sqrt{3}  +  \sqrt{2} {}^{2}  )}{(3 - 2) {}^{2} }  =(  \sqrt{3}  +  \sqrt{2} ) {}^{2}

Now put this value in expression

 \sqrt{x +  \frac{1}{x} }  \\  \\  =  \sqrt{( \sqrt{3}  -  \sqrt{2} ) {}^{2} + ( \sqrt{3}  +  \sqrt{2}  ) {}^{2} }  \\  \\  =  \sqrt{5 - 2 \sqrt{6} +5 + 2 \sqrt{6}   }  \\  \\  =  \sqrt{10}

Similar questions
Math, 8 months ago