Math, asked by saubdasmdkmdm, 9 months ago

2) If x+y+z = 4, xy + yz + zx = 1, find the value of x³+y³+z³-3xyz.​

Answers

Answered by amankumaraman11
4

Given,

 \boxed{ \large \sf{x+y+z = 4}}

 \boxed {\large{ \sf{xy + yz + zx = 1}}}

♦ To find : x³+y³+z³-3xyz = ?

 \mathbb{ \huge{\underline{SOLUTION :}}}

We know,

 \small\rm {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2} +  {y}^{2}   +  {z}^{2}   - xy - yz - xz)

So,

   \large\:  \:  \:  \:  \:  \: \to \rm {(x + y + z)}^{2}  =   {(4)}^{2}  \\  \to \small \rm {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(xy + yz + xz) = 16 \\ \rm   \to {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(1) = 16 \\  \rm \to{x}^{2}  +  {y}^{2}  +  {z}^{2} = 16 - 2 \\ \to \rm {x}^{2}  +  {y}^{2}  +  {z}^{2} =  \green{14}

Now,

Required Value of x³+y³+z³-3xyz =

 \small \rm(x + y + z)( {x}^{2} +  {y}^{2}   +  {z}^{2}   - xy - yz - xz) \\  \sf \to (4)[{x}^{2} +  {y}^{2}   +  {z}^{2}   - (xy  +  yz  + xz) ]\\  \sf \to(4)[14 - (1)]  \\  \sf \to \:  \: 4 \times 13   \:  \: =  \red{52}

Hence,

 \boxed{ \boxed{ \bf{{x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = \red{52} }}}✔✔

Similar questions